
CSCI 1320 September 18, 2008

Slide 1

Administrivia

• Reminder: Homework 1 due today (by 5pm). Office hours this afternoon if

there are last-minute questions. (Look for me in my office and also in

labs/classrooms. Room numbers on my Web page.)

(I’ll probably talk a little more in class about text editors next time.)

• Homework 2 on Web. Due next Thursday.

• Quiz 1 Tuesday. About 10 minutes long, at the end of class. Open book, open

notes. Should be no real need to study if you have kept up with reading and

material presented in class. Likely topics are overview of

computers/programming, numbers in different bases.

Slide 2

C Built-In Types, Continued

• Last time we used int, which can represent integers only, limited range (but

it’s a fairly big limit – about two million). Other integer types with smaller/larger

ranges include byte, short, and long. All can be signed or unsigned

(non-negative only).

• For numbers with a fractional part, float and double. More about them

soon.

• For character data, char. For more than one character (“character string”)

we need to know about arrays — later in the course.

• C99 adds several types, including ones for booleans and complex numbers.



CSCI 1320 September 18, 2008

Slide 3

Expressions in C

• C (like many other programming languages) has a notion of an expression,

which looks and works a little like a mathematical formula. Simple examples

(assuming we’ve declared variables x and y):

– 5

– x

– y + 5

– (x + y) / 2

• Every expression has a value, and computing this value is called evaluating

the expression. Evaluate the above expressions, assuming x has value 10

and y has value 20 . . .

Slide 4

Expressions in C, Continued

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. Examples:

– x = 10

– printf("hello, world\n)

(Yes, really! Usually we don’t care about much about the values of these

expressions, just their side effects.)

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.



CSCI 1320 September 18, 2008

Slide 5

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. Full details in your textbooks, but my advice

is — when in doubt, use parentheses! Example: (x + y) / 2 versus

x + y / 2.

Slide 6

Statements in C

• C programs are made up of statements (usually collected inside functions —

more about them later).

• Statements come in several types:

– Null (;).

– Expression (expression ;).

– Return (return expression ;).

– Compound (more later).



CSCI 1320 September 18, 2008

Slide 7

A Simple Program — Making Change

• Goal — use what we know so far to develop a simple program for “making

change”.

• Input: An integer N representing number of pennies.

• Output: How many coins of different denominations are needed to make up

N , assuming we use the minimum number of smaller coins (e.g., one dollar

rather than four quarters).

Example: For 237, we should output something like this:

Input: 237

2 dollars

1 quarters

1 dimes

0 nickels

2 pennies

Slide 8

Making Change, Continued

• First step in writing a program is — start up a text editor and start typing

code? Well, no.

• Instead, first try to understand the problem — what kinds of values can be

input, what’s supposed to be output. Possibly work through some examples.

• Now start the text editor — but rather than starting to type code, type

comments describing the input and output. This is good to have and also

helps make sure you do understand.



CSCI 1320 September 18, 2008

Slide 9

Making Change, Continued

• Now think about how to get the output we want from the input we have.

• Once we have a plan, we can start turning it into code. For anything very

complex, it can help to first type in the plan as comments, then fill in code.

• (Do this . . . )

Slide 10

Minute Essay

• What do you think our making-change program should print if the user types

in a negative number?

• What do you think it will print if the user types in a negative number?



CSCI 1320 September 18, 2008

Slide 11

Minute Essay Answer

• “It depends”! You might want it to print an error message, or count out dollars,

etc., for the absolute value of the number entered (e.g., 100 if the user

entered -100).

• Try it and see!


