CSCI 1320 September 23, 2008

Administrivia

o Reminder: Homework 2 due Thursday. Office hours most afternoons.

Slide 1

Computer Representation of Integers

e Computers represent everything in terms of ones and zeros. For
non-negative integers, you can probably guess how this works — number in
binary. Fixed size (so we can only represent a limited range).

o How about negative numbers, though? No way to directly represent
Slide 2 plus/minus. Various schemes are possible. The one most used now is “two’s
complement”: Motivated by the idea that it would be nice if the way we add

numbers doesn’'t depend on their sign. So first let’s talk about addition ...




CSCI 1320 September 23, 2008

Machine Arithmetic — Integer Addition and Negative
Numbers

e Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

e Two’s complement representation of negative numbers is chosen so that we
Slide 3 easily get 0 when we add —n and n.

Computing —n is easy with a simple trick: If m is the number of bits we're
using, addition is in effect modulo 2. So —n is equivalent to 2" — n, which

we can compute as ((2™ — 1) —n) + 1).

e So now we can easily (?) do subtraction too — to compute a — b, compute
—b and add.

Machine Arithmetic — Bit Shifting

e With base-10 numbers, multiplying (and dividing) by powers of 10 is easy,
right? just shift the decimal point.

e Same idea applies to binary numbers and powers of two — “bit shifting”.

Slide 4




CSCI 1320 September 23, 2008

-

Machine Arithmetic — Integer Multiplication

e Multiplying binary numbers also works just like multiplying base-10 numbers
— for each digit of the second operand, compute a partial result, and add

them.

e (This can get tricky, when adding more than two partial results involves

Slide 5 carrying.)

Binary Fractions

e \We talked about integer binary numbers. How would we represent fractions?

e With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.

Slide 6




CSCI 1320 September 23, 2008

-

Computer Representation of Real Numbers

o How are non-integer numbers represented? usually as floating point.
e |dea is similar to scientific notation — represent number as a binary fraction
multiplied by a power of 2:

__ (__1)\stgn bias+exp
Slide 7 x=(-1) x (14 frac) x 2

and then store sign frac, and exp. Sign is one bit; number of bits for the
other two fields varies — e.qg., for usual single-precision, 8 bits for exponent
and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

Numbers in Math Versus Numbers in Programming

e The integers and real numbers of the idealized world of math have some

properties not (completely) shared by their computer representations.
e Math integers can be any size; computer integers can't.

e Math real numbers can be any size and precision; floating-point numbers
Slide 8 can't. Also, some quantities that can be represented easily in decimal can't be

represented in binary.

o Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)




CSCI 1320 September 23, 2008

Type Conversions

e Implicit conversions: When you assign a value of one type to another (e.g.,
fl oat toi nt), or write an expression that mixes types, C will perform an
implicit conversion.

e Explicit conversions: Putting a type in parentheses before an expression
Slide 9 means you want to convert to the indicated type. Example:

(float) (1 / 2)
versus
(float) 1/ (float) 2

This is called casting.

e None — quiz.

® (Quiz solutions posted on the Web shortly after class, and | will usually bring a

hardcopy to class, if you want to take a quick look after turning in your paper.)

Slide 10




