
CSCI 1320 September 23, 2008

Slide 1

Administrivia

• Reminder: Homework 2 due Thursday. Office hours most afternoons.

Slide 2

Computer Representation of Integers

• Computers represent everything in terms of ones and zeros. For

non-negative integers, you can probably guess how this works — number in

binary. Fixed size (so we can only represent a limited range).

• How about negative numbers, though? No way to directly represent

plus/minus. Various schemes are possible. The one most used now is “two’s

complement”: Motivated by the idea that it would be nice if the way we add

numbers doesn’t depend on their sign. So first let’s talk about addition . . .



CSCI 1320 September 23, 2008

Slide 3

Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m
− n, which

we can compute as ((2m
− 1) − n) + 1).

• So now we can easily (?) do subtraction too — to compute a − b, compute

−b and add.

Slide 4

Machine Arithmetic — Bit Shifting

• With base-10 numbers, multiplying (and dividing) by powers of 10 is easy,

right? just shift the decimal point.

• Same idea applies to binary numbers and powers of two — “bit shifting”.



CSCI 1320 September 23, 2008

Slide 5

Machine Arithmetic — Integer Multiplication

• Multiplying binary numbers also works just like multiplying base-10 numbers

— for each digit of the second operand, compute a partial result, and add

them.

• (This can get tricky, when adding more than two partial results involves

carrying.)

Slide 6

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.



CSCI 1320 September 23, 2008

Slide 7

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac) × 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

Slide 8

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not (completely) shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)



CSCI 1320 September 23, 2008

Slide 9

Type Conversions

• Implicit conversions: When you assign a value of one type to another (e.g.,

float to int), or write an expression that mixes types, C will perform an

implicit conversion.

• Explicit conversions: Putting a type in parentheses before an expression

means you want to convert to the indicated type. Example:

(float) (1 / 2)

versus

(float) 1 / (float) 2

This is called casting.

Slide 10

Minute Essay

• None — quiz.

• (Quiz solutions posted on the Web shortly after class, and I will usually bring a

hardcopy to class, if you want to take a quick look after turning in your paper.)


