
CSCI 1320 September 25, 2008

Slide 1

Administrivia

• “Open lab” hours 2pm to 4pm Tuesdays and Thursdays in HAS 329.

• Reminder: Homework 2 due today (5pm).

• Reminder: Quiz 2 Tuesday.

• Homework 3 will be on the Web later today / early tomorrow. Due next

Thursday.

• Career networking event (“Making Connections”) today, starting at 5:45pm in

the Great Hall. Sounds like it might be worthwhile.

Slide 2

Encouraging(?) Words

• Writing programs is not easy. If you’ve finished at least one of the

Homework 2 problems, you’ve done something most people don’t know how

to do (!). And you’re doing it with tools that aren’t particularly easy either.

CSCI 1320 September 25, 2008

Slide 3

Quotes of the Day/Week/?

• From a key figure in the early days of computing:

“As soon as we started programming, we found to our surprise that it wasn’t

as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent finding mistakes in my own

programs.” (Maurice Wilkes: 1948)

• From someone in a discussion group for the Java programming language:

“Compilers aren’t friendly to anybody. They are heartless nitpickers that enjoy

telling you about all your mistakes. The best one can do is to satisfy their

pedantry to keep them quiet :)”

Slide 4

Tips About Tools

• To move, copy, and rename files from the command line — summary of

commands available here, linked from “Lecture topics and assignments” and

“Useful links” pages. Also mentions shortcuts such as arrow keys to repeat

previous command, tab to fill in filename.

(Or, if not working remotely, you can use the graphical file browser.)

• Solution to Homework 1, to be on Web soon, wil have some hints about vi.

http://www.cs.trinity.edu/~bmassing/Misc/1320-tips-unix.html

CSCI 1320 September 25, 2008

Slide 5

Tips for Dealing with Compiler Errors

• gcc’s error messages aren’t always helpful to beginners. As you get

experience they will mean more. Some advice for now:

• Fix the first error mentioned, then try again to compile. Sometimes this will

resolve many reported errors at once.

• Most error messages reference a line number. Look at that line and the line

above; you can often spot the problem even if you don’t completely

understand the error message.

Slide 6

Tips for Dealing With Runtime Errors

• You may have observed that even after the program compiles without error, it

may not work — it may crash (e.g., give a cryptic error message and stop), or

it may run but give wrong answers.

• A very typical error message is Segmentation fault. Most likely

cause right now is not putting that & in front of a variable name in a scanf

call.

• For dealing with wrong answers . . . (next slide).

CSCI 1320 September 25, 2008

Slide 7

Tracing Code

• A valuable skill to have is working through what the computer will do when it

executes your program — “tracing code” (also known as “playing computer”).

• Idea is to write down names of variables, their values; when one changes,

cross out old value and put in new one.

• Let’s do an example using code from last time . . .

Slide 8

Defining Named Constants with Preprocessor Directives

• Sometimes it makes sense to use numeric constants in programs — e.g., in

the Fahrenheit-to-Celsius temperature conversion program (homework).

• But sometimes it’s more readable, for humans, to give these constants a

name. Can do this with #define. Examples:

#define DAYS IN YEAR 365

#define SECONDS IN YEAR (365*24*60*60)

Then when you write DAYS IN YEAR, compiler (strictly speaking, its

preprocessor) replaces it with 365.

Notice also that if we need to calculate something, as in the second example,

it’s usually more readable to just write out the expression and let the compiler

do the calculation.

• See revised program to make change, linked from the “Sample programs”

page here.

http://www.cs.trinity.edu/~bmassing/Class/CS1320_2008fall/SamplePrograms

CSCI 1320 September 25, 2008

Slide 9

Conditional Execution

• So far all our programs have executed the same statements every time, just

maybe with different numbers.

• Often, though, we want to be able to do different things in different

circumstances — for example, print an error message and stop if the input

values don’t make sense (such as a negative number for the program to make

change).

• So, C (like most languages) provides some constructs for conditional

execution. Before we talk about them, we need . . .

Slide 10

Boolean Expressions

• A Boolean value is either true or false; a Boolean expression is something

that evaluates to true or false.

• We can make simple examples in C using familiar math comparison

operators. Examples:

– x > 10

– y <= 5

– x == y (NOTE the use of == and not =.)

CSCI 1320 September 25, 2008

Slide 11

Boolean Expressions, Continued

• Boolean algebra defines some operators on these values; the most important

for us are written in C as

– ! — “not”, true if the operand is false.

– && — “and”, true if both operands are true.

– || — “or”, true if either operand is true (or both are).

• Can use these to build up complex expressions. As with arithmetic

expressions, use parentheses when in doubt. Examples:

– (x >= 0) && (x <= 10)

– !(x == y) (though we could also just write x != y).

Slide 12

Boolean Expressions in C

• Although there are only two Boolean values, C represents them as ints,

with 0 meaning true and anything else meaning false. (Usually you don’t care

about this, but it can be good to know.)

• This means that the compiler will accept both x == y and x = y, but they

mean different things. Very common mistake (and not just for beginners!).

CSCI 1320 September 25, 2008

Slide 13

Conditional Execution — if/else

• To execute a statement if an expression evaluates to true, use if:

if (x > 0)

printf("greater than zero\n");

• To execute one statement if an expression is true, another if it’s false, use if

and else:

if (x > 0)

printf("greater than zero\n");

else

printf("not greater than zero\n");

Slide 14

if/else, Continued

• To execute a group (“block”) of statements rather than just a single statement,

use curly braces for grouping:

if (x > 0) {

printf("greater than zero\n");

printf("and that is good\n");

}

else {

printf("not greater than zero\n");

printf("and that is bad\n");

}

• What happens if you forget the braces? The program may still compile and

run, but it probably won’t do what you meant.

CSCI 1320 September 25, 2008

Slide 15

Minute Essay

• We’re planning the schedule of spring classes, so we need a rough idea of

how many students plan to sign up for PAD II. Do you think you might?

• What did you find most difficult about Homework 2? most interesting?

anything else noteworthy?

