CSCI 1320 October 7, 2008

Administrivia

o Reminder: Homework 3 due today at 5pm.

o Reminder: Midterm a week from today. There will be a short review sheet on

the Web soon, and we can spend part of Thursday reviewing.

Slide 1
\. J
4 Conditional Execution, Continued)
e |ast time we looked at examples of conditional execution, with at most two
cases. What if more than two? We could “nest” i f /el se constructs, e.g.,
if (x <0) {
printf("less than\n");
}
Slide 2 el se {
if (x >0) {
printf("greater than\n");
}
el se {
printf("equal\n");
}
}
K e But this gets ugly fairly quickly. So ...)

CSCI 1320 October 7, 2008

Conditional Execution, Continued

e Better:

if (x <0) {
printf("less than\n");

}
elseif (x >0) {
printf("greater than\n");

Slide 3

}

el se {
printf("equal\n");
}

e Can have as many cases as we need; can omit €l Se if not needed.

. J

Conditional Execution, Continued

e Sometimes we can go further, though. If all of the conditions are of the form
integer_expression == value
then we can use the SWi t ch construct. Notice that characters (Char)

count as integers in this context.

Slide 4 e Example (similar to calculator example in book) on next slide.

CSCI 1320

Slide 5

Slide 6

October 7, 2008

_

Conditional Expressions

e C also provides a short way to express things of the form
i f (condition)
variable = valuel
el se

variable = value2

namely the ternary (three operands) operator ?.

e Example:
sign = (x >=0) ?21: -1,
assigns 1to Si gn if X is non-negative, -1 otherwise.

e (Use with caution — compact, but can easily lead to code that’s difficult for
humans to understand.)

(Conditional Execution, Continued
e char menu_pick; /=* should be one of "+, "-" =/
[+ ... x/
switch (menu_pick) {
case '+':
result = inputl + input2;
break;
case '-':
result = inputl + input?2;
br eak;
defaul t:
result = 0;
printf("operator not recognized\n");
}
_
4

CSCI 1320 October 7, 2008

Functions and Problem Decomposition

e So far all our programs have been one big chunk of code. This is okay for
simple programs, but quickly becomes difficult to understand as problems get

bigger.

e Further, some things we don’t want to, or can't, really write ourselves, such as
Slide 7 the code for input/output.

® So C, like many/most other programming languages, gives you a way of
decomposing problems into subproblems. C calls them functions. Using this
feature to good effect is something of an art, but may teach you something

about problem decomposition in general, which is a useful skill.

Functions in C

e C functions are similar to functions in math, except that they can have side

effects (similar to how evaluation of expressions can have side effects).

o We will talk a little now, and more next time, about how to define our own

functions. Notice for now that every program you / we have written so far
Slide 8 defines a function called mai N, and most of them use system library
functions scanf and pri ntf.

CSCI 1320 October 7, 2008

Functions in C, Continued

e Every function has
— A name (where rules for names are the same as those for variables).
— Zero or more inputs (called parameters).

— Areturn type (VOi d to indicate that the function doesn’t return anything).

Slide 9 — Some code to be executed when the function is called.

e When you call (use) a function, you

— Supply values for inputs (pass in values for parameters).

— Optionally, use the value returned by the function. The function call is an
expression, as discussed previously, and its value is the value returned by
the function.

Defining and Using Functions

e Simple example of defining and using a function to add two integers:

int add(int a, int b) {
return a + b;

}

int main(void) {

Slide 10 int result = add(1, 2);

printf("%l\n", result);
return O,

}

e add has two parameters (a type of variable) called a and b. When we call
add from mai n, the values 1 and 2 are copied into these variables. The
code in add executes until it reaches a r et ur n. At that point, we go back
to the calling function, and the value of the function call is whatever is after

K the keyword I et ur n.

J

CSCI 1320 October 7, 2008

4 . _)
The maul N Function

e As noted, every C program you / we have written so far includes a definition of

a function called mai n. All complete C programs must have such a function.

e MAi N is defined in your code:

— It has no parameters. (Actually, it can — there’s an alternative definition
Slide 11 that allows it to accept command-line arguments, similar to the ones that

follow commands such as gcc, | s, etc. Later!)

— It returns an integer value.

e mai n is called by some type of environment (the command shell for us,
when you type &. ouUt after compiling). It gives your code the optional
parameters (more about this later) and receives the value you return. Return
value can be used to indicate success/failure (useful for shells that

themselves support conditional execution).

. J

C Library Functions

e Standard C comes with a number of library functions to do things many

programs want to do.
e Examples we've seen so far —scanf , printf.
o UNIX/Linux systems normally have man pages for these functions, describing

Slide 12 parameters and return values in full detail (hence, not always easy reading).
(Tip: man pri ntf gives the man page for a command rather than the C
function. Use man 3 pri ntf to get what we want.)

(Tip: When reading a main page, h will bring up a summary of what keys do

what — page up/down, quit, etc.)

CSCI 1320

October 7, 2008

Slide 13

e None — quiz.

