
CSCI 1320 October 30, 2008

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on Web, due next Thursday.

Slide 2

UNIX/Linux Tip

• I strongly encourage using gcc’s optional flags -Wall and -pedantic,

or at least -Wall. But that’s a lot to type every time. So:

• Remember that the up arrow cycles through previous commands.

• Or copy the Makefile from the “Sample programs” page here. into the

directory with your programs, and type make hello to compile

hello.c. Note that the result will be called hello rather than a.out

(so to run it you type hello rather than a.out).

http://www.cs.trinity.edu/~bmassing/Classes/CS1320_2008fall/SamplePrograms


CSCI 1320 October 30, 2008

Slide 3

Functions — Review

• Functions are somewhat like math functions — zero or more inputs, one

output (return value) or none.

• Defining a function – specify

– Its name (same rules as for variables — letters, numbers, underscores).

– What parameters it needs (types, “local names” — void if none.

– What type of thing it returns (void if nothing).

– Some code. Can include local variables. If function returns something

other than void, must include at least one return followed by the

value to return.

• Declaring a function — just give name, parameters, return type. Definition

can be somewhere else in the program.

Slide 4

Functions — Review, Continued

• Calling a function — give its name, values for parameters. This is an

expression (in the same sense as, say, x+1) and — unless the function

returns void — has a value, which can be assigned to a variable, used as

part of a boolean expression for conditional execution, etc.

• Since a function call is an expression — when we come to one, we evaluate it:

Pause what’s currently happening. Copy values of input variables to function’s

parameters. Execute code in function until we get to a return, or the

ending curly brace. Whatever expression follows return is the function’s

(return) value. Continue execution in “caller” using return value.

Notice that executing code in the function may produce “side effects” (e.g.,

printing something).



CSCI 1320 October 30, 2008

Slide 5

Repetition — Review/Recap

• Several ways to repeat something — recursion. loop constructs discussed

last time.

• Which to use? in general, the one that makes the programs easiest for

humans to understand — worry about efficiency only when it matters.

• Key ideas to think about in designing loops:

– What is it you want to repeat? and what’s different about each repetition?

This should tell you what the loop body is, and what variable(s) in it will

change.

– For the variables that will change, what should their initial value be? How

do they change from one iteration to the next?

– When do you stop repeating?

Slide 6

Examples of Using Loops

• Look again at the “convert English to metric” example program. We could

make some improvements (or changes anyway):

– First change it so it lets you do multiple conversions without running the

program again.

– Now change the function that gets a number so if you type in something

other than a number, it asks again.

• Suppose we want to read in a bunch of numbers and print their sum. How to

do that? (Next time.)



CSCI 1320 October 30, 2008

Slide 7

Minute Essay

• None — quiz.


