
CSCI 1320 November 6, 2008

Slide 1

Administrivia

• Reminder: Homework 5 due today. (Sketch out a solution in class for second

problem.)

Slide 2

Input/Output Redirection in UNIX/Linux

• We talk about scanf reading input “from the user” or “from the keyboard”,

and printf printing “to the screen”.

• But that’s not quite right — really, scanf reads from standard input, and

printf writes to standard output.

• What’s the difference? can redirect standard input/output to use (text) files

instead. Example:

myprogram < test1-in > test1-out

to have myprogram get its input from test1-in rather than the

keyboard, and put its output in test1-out rather than showing it on the

screen. (Overwrites test1-out. To append instead, use >>

test1-out.)



CSCI 1320 November 6, 2008

Slide 3

Files and C

• Why files? You probably already know: Things stored in memory vanish when

you turn the computer off; to preserve them, usually save them as files.

• We know one way for a C program to get its input from a file, or write its

output to a file — I/O (input/output) redirection. But this makes it difficult or

impossible to also get input from the keyboard, write output to the screen.

• So C (like many other programming languages) provides ways to work more

generally with files.

Slide 4

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

Unix doesn’t make a distinction, but other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).



CSCI 1320 November 6, 2008

Slide 5

Streams in C

• In C, streams are represented by the type FILE *. FILE is something

defined in stdio.h. The * means pointer (which we’ll talk about later).

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams — next slide.

Slide 6

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file (for now, text in double quotes).

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)



CSCI 1320 November 6, 2008

Slide 7

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc may also be useful.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

• Examples next time.

Slide 8

Minute Essay

• None — quiz.


