
CSCI 1320 November 11, 2008

Slide 1

Administrivia

• (None.)

Slide 2

Files in C — Recap

• We talked last time about one way to deal with files in C — as “streams”.

• To do this — use fopen to associate a stream (FILE *) in your program

with a filename, fscanf and fprintf to read and write (very much like

scanf and printf), and fclose when done.



CSCI 1320 November 11, 2008

Slide 3

Examples

• Example — read integers from numbers.txt, write even ones to

evens.txt, odd ones to odds.txt.

• Example — file-to-file copy, but turning uppercase into lowercase and vice

versa. (This will also be practice using the character-oriented library functions

described in the textbook.)

• (Other examples as time permits?)

Slide 4

Why Arrays?

• Suppose you wanted to write a program to count how many times each letter

occurs in a text file. What would you do? Is there an obvious way to solve this

with what we’ve discussed so far?



CSCI 1320 November 11, 2008

Slide 5

Why Arrays?, Continued

• You could have a variable for how many A’s, one for how many B’s, etc., and a

huge switch construct. But how ugly . . .

• What seems to be needed is something similar to subscripted variables in

math — an array.

Slide 6

Arrays

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many

numbers/characters and give a common name to all. You can then reference

an individual element via its index (similar to subscripts in math).



CSCI 1320 November 11, 2008

Slide 7

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

old C, it had to be a constant. In newer C, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

Slide 8

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements

with indices 0 through n − 1. What happens if you reference element -1? n?

2n?

• Well, the compiler won’t complain. At runtime, the computer will happily

compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .



CSCI 1320 November 11, 2008

Slide 9

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable.” Maybe it’s outside the memory your program can

access, in which case you probably get the infamous “Segmentation fault”

error message.

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. This is the essence of the buffer overflows you hear

mentioned in connection with security problems.

• What to do? Be careful. (Probably worth noting here that some other

languages, Java for example, protect you from such errors.)

Slide 10

Minute Essay

• One of our example programs copies a text file, changing lowercase letters to

uppercase and vice versa. What would you have to do to this program to

allow it to copy a non-text file without changing its contents?



CSCI 1320 November 11, 2008

Slide 11

Minute Essay Answer

• Not much — just open the input and output files with mode parameters "rb"

and "wb" respectively, and copy characters without changing case.


