
CSCI 1320 November 18, 2008

Slide 1

Administrivia

• Reminder: Quiz 5 Thursday. Likely topics are arrays and using files.

• Reminder: Homework 6 Thursday.

• How many will be here next Tuesday?

Slide 2

Sorting and Searching — Overview

• Something we often want to do is put things in order — similar to

“alphabetizing” a list of names. Techspeak for this is sorting, and it can be

done to anything for which you can define an ordering.

• A related problem is searching (“does this array contain a specified

element?”). One motivation for sorting is that it makes searching much faster.

(Why? Well — how would you search for something in a list, if the items are in

no particular order? How does it help to know that they are in order? Think

about searching for a particular word in a dictionary.)

• So, if you have a list of things, how would you put them in order?



CSCI 1320 November 18, 2008

Slide 3

Sorting

• Many ways to put a list of things in order. Some are simple to understand and

to code, but slow. Others are somewhat more complicated, but faster. (What

do we mean by “slow”? More about that later.)

• Simple-but-slow methods:

– Bubble sort: Repeatedly go through the list exchanging adjacent elements

that are out of order.

– Selection sort: Find the largest (or smallest) element and put it at the

appropriate end. Repeat with the next largest (smallest) element, putting it

next to the end, and so forth.

– Insertion sort: Start with one element, and “insert” subsequent elements

into a sorted-list-so-far.

All of these have running time proportional to N2, where N is the number of

things to sort. (Better algorithms have time proportional to N log N .)

Slide 4

Comparing Algorithms

• We’re talking here about different ways of solving the same problem (putting a

list of things in order) — different algorithms. Which is “better”, or is there any

way to compare?

• One comparison is simplicity / readability — the simpler the algorithm, the

more likely it is you can turn it into code and get it right.

• Another, though, is resource use — memory use, running time. Actually

measuring these depends on a lot of factors, hardware and software. Is there

some way to estimate, before writing the code and trying it?



CSCI 1320 November 18, 2008

Slide 5

Order of Magnitude of Algorithms

• An estimate — “order of magnitude”, a.k.a. “big-oh notation”. Similar to order

of magnitude of numbers — crude estimate, but good enough to be useful in

many situations.

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 6

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1320 November 18, 2008

Slide 7

Order of Magnitude for Sorting Algorithms

• For sorting algorithms, we usually count the number of times we compare two

elements.

• For selection sort: Finding the largest element (of N ) requires how many

comparisons? Finding the next largest takes how many? and so forth . . .

• For bubble sort: The first pass through the data involves how many

comparisons? The next pass? and so forth . . .

Slide 8

Searching

• Another thing we often want to do is find out whether a given element is in an

array.

• Obvious way is sequential search — start at one end, look at each element

until you either find what you want or get to the end.

• Less obvious way is binary search and works only if array is sorted —

compare the thing you’re looking for (search elem) to the element in the

middle of the array (a[mid]). Three cases:

– search elem == a[mid]. Done!

– search elem < a[mid]. Search elements to the left (recursively).

– search elem > a[mid]. Search elements to the right

(recursively).



CSCI 1320 November 18, 2008

Slide 9

Order of Magnitude for Searching Algorithms

• For searching algorithms, we also usually count the number of times we

compare two elements.

• For sequential search: Looking for something in a list of N elements requires

how many comparisons? best case? worst case?

• For binary search: Looking for something in a list of N elements requires how

many comparisons? best case? worst case?

Slide 10

Sorting and Searching — Code

• Before we start writing code, think a minute about how to test it. Certainly we

can get input from a human user. But if we just want to know if the sorting

function works, we might have the program generate its own data, and check

its own results. This would also let us easily observe how running time (or

something related) increases as a function of number of elements.

• How to generate data? We could use rand to generate “random” data.

(More on next slide.)

• How to check results?



CSCI 1320 November 18, 2008

Slide 11

Pseudo-Random Number Generators

• The last slide put quotes around “random”. Why? Partly because exactly what

random means is difficult to pin down, partly because the best we can do in

deterministic code is a good fake — pseudo-random.

• Mathematically interesting topic, classic reference is in one of the volumes of

Donald Knuth’s The Art of Computer Programming.

• Also used more than one might think in programming! for example, in

simulating various things in the physical world. Textbook examples often

involve simulating rolling dice, shuffling cards, etc.

Slide 12

Minute Essay

• We said that for selection sort and bubble sort the (worst case) number of

comparisons for N elements is

(N − 1) + (N − 2) + . . . + 1

Try to come up with a similar formula for insertion sort (where you first insert

the second element into a list consisting of the first element, then insert the

third element into a list containing the first two, etc.).



CSCI 1320 November 18, 2008

Slide 13

Minute Essay Answer

• The analogous formula for insertion sort is

1 + 2 + . . . + (N − 1)

• Since this is the same sum as the other two, but in reverse order, overall

number of comparisons is the same — N(N − 1)/2, i.e., O(N2).


