
CSCI 1320 December 2, 2008

Slide 1

Administrivia

• Reminder: Quiz 6 Thursday. Likely topics are pointers and strings.

• Homework 7 on Web; due next Tuesday.

Slide 2

Pointers — Review

• Most/many programming languages provide a way to “point to” something in

memory (such as a variable). In C, these are called pointers, and you declare

them by putting a * after the type of the thing pointed to. (Notice that this

means you can have pointers to pointers!)

• You can get the address of a variable with &. You “dereference” a pointer

(access what it points to) with *.

• One important use of pointers is to allow returning more than one thing from a

function, as scanf can.

CSCI 1320 December 2, 2008

Slide 3

Pointers, Arrays, and Pointer Arithmetic in C

• C treats pointers and arrays as interchangeable in most respects. (This is why

it works that many functions whose parameters are supposed to be strings —

arrays of characters — declare them as pointers. fopen is an example.)

• C also permits doing some arithmetic operations on pointers (addition and

subtraction). Adding n to a pointer that points to type advances it n times the

size of type.

Example: If a is an array of ints, a[2] and *(a+2) are equivalent. (This

means we could write loops over arrays using pointers. Once upon a time that

was sometimes more efficient. With current compilers, probably not so, so

use whatever is most readable.)

Slide 4

Text Strings in C, Revisited

• As mentioned briefly last time: C represents text strings as arrays of

characters, with the end of the string indicated by a special “null” character.

• There are many library functions useful for working with strings. But as

practice working with arrays and pointers and dynamic memory, we could

write some of our own . . .

CSCI 1320 December 2, 2008

Slide 5

Text Strings in C, A Little More

• A significant problem in working with strings is that there’s no natural

maximum size, so you have to decide how big to make the array of characters

you will use to hold one — and then be sure you don’t try to put in too many

characters.

• Some library functions let you say how big the array is; some don’t. Always be

as careful as you can when working with strings; trying to store a string in an

array not big enough is a source of “buffer overflows”, which can lead to

program crashes and more subtle problems, including security risks.

• Example — revisit the “change case” example, but prompt for filenames.

Slide 6

Arrays of Text Strings and Command-Line Arguments

• If you can have arrays of int and char and so forth — can you have arrays

of text strings? Sure! They look like two-dimensional arrays of char, or like

arrays of char *.

• Further, this is how C programs get input “from the command line” (e.g., when

you write gcc myprogram.c, gcc somehow gets myprogram.c,

right?):

main can also be defined as

int main(int argc, char * argv[]) { }

where argc is the number of arguments, plus one, and argv is an array of

strings containing the arguments. Example — let’s write a simple “echo”

program.

CSCI 1320 December 2, 2008

Slide 7

Minute Essay

• About the textbook — what did you like? what did you not like?

