
CSCI 1320 December 4, 2008

Slide 1

Administrivia

• Reminder: Homework 7 due Tuesday. (We need to set a “not accepted past

this date/time” so I can post solutions. Should it be end of the day Thursday?)

• (If there are other homeworks you haven’t turned in, or you turned in

something but you know it wasn’t right — I will give some points for anything

turned in by the deadline for Homework 7.)

Slide 2

Dynamic Memory and C

• With the old C standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays help with that, but don’t solve all related problems:

In most implementations, space is obtained for them on “the stack”, an area of

memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).



CSCI 1320 December 4, 2008

Slide 3

Dynamic Memory and C

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(The trick here is that most implementations differentiate between two areas

of memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can not bother with free, but for longer and

more complicated programs, you should clean up when you can, or eventually

you may run out of memory.)

Slide 4

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *
20);

free(nums);

• Book recommends “casting” value returned by malloc. Other references

recommend the opposite! But you should check the value — if NULL, system

was not able to get that much memory.

• Example — program to generate N numbers and sort them.



CSCI 1320 December 4, 2008

Slide 5

One More Topic — User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects (e.g., a “money” object to represent

dollars and cents — useful since floating-point is inexact for decimal

fractions).

• Most/many programming languages (C included) do let you do that, in various

ways . . .

Slide 6

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.



CSCI 1320 December 4, 2008

Slide 7

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

Slide 8

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types.

• One way to define uses typedef:

typedef struct {

int dollars;

int cents;

} money;

money bank_balance;

• Another way doesn’t:

struct money {

int dollars;

int cents;

};

struct money bank_balance;



CSCI 1320 December 4, 2008

Slide 9

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct money bank_balance;

bank_balance.dollars = 100;

bank_balance.cents = 20;

-> if what you have is a pointer to a struct:

struct money * bank_balance_ptr = &bank_balance;

bank_balance_ptr->dollars = 100;

bank_balance_ptr->cents = 100;

• (Short example if time permits.) (It didn’t — there will be an example on the

sample programs page.)

Slide 10

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See the discussion in the textbook for more about this; it can be useful, but

can also make code more difficult to understand.



CSCI 1320 December 4, 2008

Slide 11

Minute Essay

• None — quiz.


