
CSCI 1320 September 8, 2011

Slide 1

Administrivia

• Reminder: Homework 1 due today. Send me e-mail with the file you wrote as

an attachment. Simplest way to do this is from a browser on one of the

lab/classroom machines. If you’re working remotely, you can copy the file to

your machine as described in my notes on remote access.

• Quiz 1 will be a week from today. More about it next time.

• If you’re perplexed by the textbook’s occasional use of the character ¿ — it’s

meant to be a >. (Tools glitch!)

Slide 2

Minute Essay From Last Lecture

• Everything apparently reasonably clear so far (!).

• One person asked about vi error messages produced when a session

“crashes”. My e-mail of earlier this week is meant to explain.



CSCI 1320 September 8, 2011

Slide 3

Programming-Language Terminology

• token: set of characters that means something in the language, often

separated by whitespace.

• literal : token representing a value (e.g., 1).

• statement : set of tokens that give a complete action.

• expression: set of tokens that together give a value (e.g., 1 + 1).

• type: set of values together with operations on them (e.g., integer, (text)

string). Every value has a type.

Slide 4

Numeric Literals and Expressions

• Numeric literals and expressions should be fairly familiar. Notice that Scala

(like many programming languages) makes a distinction between integers

and numbers that have (or might have) a fractional part.

• Use the interpreter’s REPL to try out things. Some things may be surprising

— integer division, large numbers, calculations using fractions. To understand

some of these it helps to know how the computer represents numbers.



CSCI 1320 September 8, 2011

Slide 5

Binary Numbers

• We humans usually use the decimal (base 10) number system, but other

(positive integer) bases work too. (Well, maybe not base 1.) Binary (base 2) is

more widely used in computers because it makes the hardware simpler.

• In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (bits), with values 0 and 1.

• In base 10, 1010 means what? What about in base 2?

Slide 6

Converting Between Bases

• Converting from another base to base 10 is easy if tedious (just use

definition).

• Converting from base 10 to another base? Let’s try to develop an algorithm

(procedure) for that . . .



CSCI 1320 September 8, 2011

Slide 7

Decimal to Binary, Take 1

• One way is to first find the highest power of 2 smaller than or equal to the

number, write that down, subtract it from the number, and continue:

1. If n = 0, stop.

2. Find largest p such that 2p ≤ n.

3. Write a 1 in the p-th output position.

4. Subtract 2p from n.

5. Go back to first step.

• Is this okay? What’s not quite right about it? (We don’t say what to put in the

positions that don’t have ones in them.)

• (Example.)

Slide 8

Decimal to Binary, Take 2

• Another way produces the answer from right to left rather than left to right,

repeatedly dividing by 2 (again n will be the number we want to convert):

1. If n = 0, stop.

2. Divide n by 2, giving quotient q and remainder r.

3. Write down r.

4. Set n equal to q.

5. Go back to first step.

• Is this okay? What’s not quite right about it? (We don’t say to write down the

remainders from right to left.)

• (Example.)



CSCI 1320 September 8, 2011

Slide 9

Octal and Hexadecimal Numbers

• Binary numbers are convenient for computer hardware, but cumbersome for

humans to write. Octal (base 8) and hexadecimal (base 16) are more

compact, and conversions between these bases and binary are

straightforward.

• To convert binary to octal, group bits in groups of three (right to left), and

convert each group to one octal digit using the same rules as for converting to

decimal (base 10).

• Converting binary to hexadecimal is similar, but with groups of four bits. What

to do with values greater than 9? represent using letters A through F (upper

or lower case).

• (Examples.)

Slide 10

Computer Representation of Integers

• Computers represent everything in terms of ones and zeros. For

non-negative integers, you can probably guess how this works — number in

binary. Fixed size (so we can only represent a limited range).

• How about negative numbers, though? No way to directly represent

plus/minus. Various schemes are possible. The one most used now is “two’s

complement”: Motivated by the idea that it would be nice if the way we add

numbers doesn’t depend on their sign. So first let’s talk about addition . . .



CSCI 1320 September 8, 2011

Slide 11

Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m − n, which

we can compute as ((2m − 1) − n) + 1).

• So now we can easily (?) do subtraction too — to compute a − b, compute

−b and add.

Slide 12

Machine Arithmetic — Integer Multiplication

• Multiplying binary numbers also works just like multiplying base-10 numbers

— for each digit of the second operand, compute a partial result, and add

them.

• (This can get tricky, when adding more than two partial results involves

carrying.)



CSCI 1320 September 8, 2011

Slide 13

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.

Slide 14

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac) × 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.



CSCI 1320 September 8, 2011

Slide 15

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not (completely) shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented exactly in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)

Slide 16

Minute Essay

• What is 1102 in base 10?

• What’s the (base 10) value of the largest number you can represent with 4

bits? (E.g., the largest number you can represent with 2 bits is 112, or 310.)



CSCI 1320 September 8, 2011

Slide 17

Minute Essay Answer

• 1102 is 610.

• 15 (11112).


