
CSCI 1320 September 27, 2011

Slide 1

Administrivia

• Homework 1 and Homework 2 sample solutions on Web. (These are meant to

be reasonable/good solutions, but not the only possible ones. As long as your

code works you should get full credit.)

• Homework 3 will be on the Web tomorrow. (I will send mail.) Due a week from

today.

• ACM is doing free tutoring in HAS 329, M/T/W/R 3:30pm–5pm.

Slide 2

Minute Essay From Last Lecture

• Most people found Homework 2 doable though maybe more time-consuming

than they thought. (Previous experience with programming did seem to help

— no surprise!)

A comment I appreciated: “The scenarios were easy to understand until I

tried to program them . . . ”

• One person commented on needing 5.0 rather than 5 in the temperature

conversion program. (Why?)



CSCI 1320 September 27, 2011

Slide 3

Conditional Execution — A Bit More

• Notice that this

if (x < y) println("this")

if (x >= y) println("that")

is the same as

if (x < y) println("this")

else println("that")

(I.e., in the “else” part of an if/else you know the condition is false. Testing

again makes the program longer and more error-prone.)

• (Finish/review bounding-box example from last time. Notice again the use of

tuples and “pattern-matching”.)

Slide 4

Functions — Review/Recap

• Functions are most useful for two things — decomposing problems into

manageable pieces, and avoiding duplicating code.

• But they also provide one way to get something we don’t have yet, namely

repetition/iteration . . .



CSCI 1320 September 27, 2011

Slide 5

Repetition and Recursion

• Having if/else allows us to do a lot of things we couldn’t do before, but there

are still things we can’t do easily, mostly involving some sort of repetition.

Simple example — adding something to the grade program that would prompt

for six quiz scores. Another example might be trying to use our bounding-box

function to find a bounding box to enclose more than two rectangles, with the

choice of how many up to the user.

• Scala provides many ways to do this. We will look at recursion first . . .

Slide 6

Recursion

• Basic idea of recursion is to solve a problem by defining

– “base cases” we can easily, and

– a way of reducing other cases to “smaller” instances of the problem

• Simple examples abound in math; a traditional first example is computing the

factorial of an integer. We can define n! as the product of the integers from 1

through n, or we can use a recursive definition:

n! =







n · (n − 1)! if n > 1

1 otherwise

This is easy to convert into code in a language that supports recursion . . .



CSCI 1320 September 27, 2011

Slide 7

Recursion, Continued

• Key ideas in recursion:

– One or more base cases that can be solved without recursion.

– A way of splitting up other cases into one or more smaller recursive calls

plus some other logic.

• Very important that recursive calls be somehow smaller, so that you

eventually reach a base case!

• As one more example for now — function to “count down” (print numbers from

starting point through 1).

Slide 8

Minute Essay

• None — quiz.


