
CSCI 1320 September 29, 2011

Slide 1

Administrivia

• Reminder: Homework 3 due Tuesday. Okay to turn in Wednesday since there

was a delay in getting it on the Web.

• Notice that quiz solutions are on the Web (usually posted shortly after the

quiz).

Slide 2

Recursion for Repetition — Review/Recap

• One way to repeat something a fixed number of times, or until some condition

is true, is with recursion.

• Examples last time included factorial, “count down”. (Notice that we can

easily make the function a complete program/script by just adding something

to the end to get input from the user. Sample program roots.scala

shows an example, or countdown.scala from last time.)

• Example in book of using recursion to compute sum of numbers.

• Another example — make our rather sketchy all-purpose conversion program

keep asking for input until the user says to quit, rather than doing only one

conversion.



CSCI 1320 September 29, 2011

Slide 3

One More Conditional Construct — Match

• Notice in the conversion program that we have a lot of if/else’s testing the

same variable against various values. Somewhat repetitive, no? Some

languages provide more-compact way to express this (e.g., switch in C

and Java).

• Scala provides something more general — match. Allows matching

specified variable with multiple conditions . . .

Slide 4

Match, Continued

• Simple example:

val c = readChar

n match {

case ’a’ => println("found a")

case ’b’ => println("found b")

case _ => println("not a or b")

}

This is already more powerful than what some languages provide, in that you

can match strings. Much more is possible. Details later.

• We could use this to improve(?) the converter program . . .



CSCI 1320 September 29, 2011

Slide 5

Sidebar — Input/Output Redirection

• In beginning programming classes we often talk about getting input “from the

keyboard”. What if you want to read a lot of input, though, and maybe do it

more than once (e.g., you want to confirm that after making a change to your

program it still works for the inputs you tried before)?

• Strictly speaking, readInt, etc., do not read from the keyboard, but from

“standard input”. What’s the difference? Many environments (including typical

UNIX/Linux command shells) allow you to “redirect standard input” to indicate

that it should come from something other than a human at a keyboard.

• Similarly, println doesn’t write to “the terminal” but to “standard output”.

Slide 6

Sidebar — Input/Output Redirection, Continued

• Programs can get input from files:

scala mypgm.scala < infile

where infile is a plain-text file containing input.

• Programs can put output in files:

scala mypgm.scala > outfile

(Use >> to append rather than overwriting.)



CSCI 1320 September 29, 2011

Slide 7

Sidebar — Input/Output Redirection, Continued

• Or we can use the output of one program as the input of another (“pipe” the

output of one to another):

scala pgm-to-make-nums.scala | scala sum.scala

One use for this — if a program produces so much output it scrolls off the

screen, pipe it to less.

Nitpick/caveat: Some output (usually error messages) is written to “standard

error” rather than standard output, and it doesn’t get redirected unless you

ask for it to be. A syntax that works in our environment is to follow the > or |

symbol with an ampersand (&).

• (This is one of the reasons some people like command-line environments —

you can do a lot with them if you know how.)

Slide 8

Arrays and Lists — Preview

• With what we’ve done so far we have enough tools to compute anything we

want to compute.

• However, some things are awkward (repetition), and we don’t yet have a

convenient way to store many values — something similar to subscripted

values in math. (Think about writing some sort of drawing program, one for

which our bounding-box function might be useful. Probably you want to

somehow store a lot of rectangles or more-general shapes. How?)

• Most programming languages give you a way to represent collections. Exactly

what you get depends on the language — e.g., C gives you only something

quite primitive (but close to what the hardware can do), Java gives you

something more abstract/useful, and Scala goes even further.



CSCI 1320 September 29, 2011

Slide 9

Minute Essay

• Can you think of (other) situations in which redirecting program input or output

might be useful?


