
CSCI 1320 October 13, 2011

Slide 1

Administrivia

• Reminder: Midterm Tuesday. Review sheet on the Web. Also quiz solutions

and sample solutions to homeworks (Homework 3 solution soon).

Slide 2

About the Midterm

• Review class notes, homeworks, readings. If I didn’t mention it in class, odds

are I won’t ask about it on the exam.

• Questions will be a mix of problems similar to those in quizzes, plus possibly

some true/false, multiple choice, or short-answer.

• Open book, open notes. Okay to use a computer to review book, your notes

and graded work, and the course Web site, but nothing else. No using the

Scala interpreter/compiler to answer questions about programs, sorry.

• (Topic by topic through the review sheet.)

CSCI 1320 October 13, 2011

Slide 3

Recursion — Review/Recap

• A function (or definition) is recursive if it calls/uses itself. Obviously(?) there

needs to be at least one base case too.

• Can be somewhat tricky to think about whether/how recursive functions work

— it involves nested calls to the same function, one “inside” the other in some

sense. May be helpful to take what I call a “static” perspective, focusing on the

code and one call to the function rather than the whole bunch of nested calls.

• To do that, first be clear on what the function does — “computes n factorial”,

or “computes the sum of array elements starting at this index”. Then ask . . .

Slide 4

Recursive Functions — “(How) Does it Work”?

• (How) does it work for the base case(s)?

• (How) does it work for the non-base cases, assuming that the recursive calls

work, meaning that they do what the function is supposed to do, based on the

definition you came up with.

• (How) does each recursive call get us closer to a base case?

• (In some ways this is a mirror image of induction, as in proofs by induction,

where we start with small cases and construct more complex ones.)

CSCI 1320 October 13, 2011

Slide 5

Arrays and Lists — Review/Recap

• Scala provides two basic types of “sequences”, arrays and lists.

• Several ways to work with them. We start out by applying tools we already

have (recursive functions), partly to get more practice with them. Also an

opportunity to revisit “higher-order functions” (functions that use other

functions as parameters) . . .

Slide 6

Higher-Order Functions — Review/Recap

• “Higher-order functions” (first discussed in chapter 5) are functions that use

other functions as parameters (or as return values). Very useful concept,

supported in fairly different ways in different languages.

• As an example of how this is useful — summing all elements of an array

versus computing their product, versus finding the smallest or largest

element, etc. Basic computation (a reduction) involves combining elements

pairwise with a binary operator, and by using a higher-order functions we

don’t have to repeat the parts that are the same.

CSCI 1320 October 13, 2011

Slide 7

Defining Higher-Order Functions in Scala

• Syntax illustrated by our example from class:

def arrayCombine(a : Array[Int], startIndex : Int,

combine : (Int, Int) => Int, identity : Int) : Int = { /* */ }

where combine is a parameter that is itself a function(!).

(I could have put all of that on one line, but it would have been long.)

• Within the body of the function (arrayCombine in the example) we can

call the parameter function (combine) as we usually do, e.g.,

combine(1, 2) to call the function with parameters 1 and 2.

Slide 8

Using Higher-Order Functions in Scala

• One option for function parameters is a named function:

def add(x : Int, y : Int) : Int = { x + y }

arrayCombine(a, 0, add, 0)

• Another option is a function literal:

arrayCombine(a, 0, (x, y) => (x + y), 0)

• Yet another option is a special form of a function literal:

arrayCombine(a, 0, _ + _, 0)

CSCI 1320 October 13, 2011

Slide 9

Example(s) Revisited

• We could now revise our array demo program to do still more things with the

array — find minimum and maximum elements, for example. (Not done in

class.)

• We could add similar functionality to our list demo program.

Slide 10

Minute Essay

• About how much time a week are you spending on this class outside of class?

How much of it involves actually programming, or at least trying things in the

REPL? (Keep in mind the minute-essay mantra — “no wrong answers”.)

