
CSCI 1320 September 10, 2012

Slide 1

Administrivia

• Reminder: Homework 1 due today.

• (Most?) sample programs from class will be on the Web, sometime after

class.

Slide 2

Minute Essay From Last Lecture

• A few people had questions about vi. I’m hoping the homework has cleared

those up(?).

• Several people wanted a bit of review of binary versus decimal. Coming

up . . .



CSCI 1320 September 10, 2012

Slide 3

Binary Numbers (Review)

• We humans usually use the decimal (base 10) number system, but other

(positive integer) bases work too. (Well, maybe not base 1.) Binary (base 2) is

more widely used in computers because it makes the hardware simpler.

• In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (bits), with values 0 and 1.

Slide 4

Converting Between Bases

• Converting from another base to base 10 is easy if tedious (just use

definition).

• Converting from base 10 to another base? Two algorithms for that . . .



CSCI 1320 September 10, 2012

Slide 5

Decimal to Binary, Take 1

• One way is to first find the highest power of 2 smaller than or equal to the

number, write that down, subtract it from the number, and continue:

1. If n = 0, stop.

2. Find largest p such that 2p ≤ n.

3. Write a 1 in the p-th output position.

4. Subtract 2p from n.

5. Go back to first step.

• Is this okay? What’s not quite right about it? (We don’t say what to put in the

positions that don’t have ones in them.)

• (Example.)

Slide 6

Decimal to Binary, Take 2

• Another way produces the answer from right to left rather than left to right,

repeatedly dividing by 2 (again n will be the number we want to convert):

1. If n = 0, stop.

2. Divide n by 2, giving quotient q and remainder r.

3. Write down r.

4. Set n equal to q.

5. Go back to first step.

• Is this okay? What’s not quite right about it? (We don’t say to write down the

remainders from right to left.)

• (Example.)



CSCI 1320 September 10, 2012

Slide 7

Octal and Hexadecimal Numbers

• Binary numbers are convenient for computer hardware, but cumbersome for

humans to write. Octal (base 8) and hexadecimal (base 16) are more

compact, and conversions between these bases and binary are

straightforward.

• To convert binary to octal, group bits in groups of three (right to left), and

convert each group to one octal digit using the same rules as for converting to

decimal (base 10).

• Converting binary to hexadecimal is similar, but with groups of four bits. What

to do with values greater than 9? represent using letters A through F (upper

or lower case).

• (Examples.)

Slide 8

Computer Representation of Integers

• Computers represent everything in terms of ones and zeros. For

non-negative integers, you can probably guess how this works — number in

binary. Fixed size (so we can only represent a limited range).

• How about negative numbers, though? No way to directly represent

plus/minus. Various schemes are possible. The one most used now is “two’s

complement”: Motivated by the idea that it would be nice if the way we add

numbers doesn’t depend on their sign. So first let’s talk about addition . . .



CSCI 1320 September 10, 2012

Slide 9

Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m − n, which

we can compute as ((2m − 1) − n) + 1).

• So now we can easily (?) do subtraction too — to compute a − b, compute

−b and add.

Slide 10

Machine Arithmetic — Integer Multiplication

• Multiplying binary numbers also works just like multiplying base-10 numbers

— for each digit of the second operand, compute a partial result, and add

them.

• (This can get slightly tricky, when adding more than two partial results

involves carrying, but basic idea is straightforward extrapolation from how it

works in base 10.)



CSCI 1320 September 10, 2012

Slide 11

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.

Slide 12

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac) × 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.



CSCI 1320 September 10, 2012

Slide 13

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not (completely) shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented exactly in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)

Slide 14

Scala and Representing Numbers — Review/Recap

• Computer hardware typically represents integers as a fixed number of binary

digits, using “two’s complement” idea to allow for representing negative

numbers. Scala, like many (but not all!) programming languages bases its

notion of integer data on this, but also has a notion of different types with

different sizes (e.g., Int versus Long).

• Hardware also typically supports “floating-point” numbers, with a

representation based on a base-2 version of scientific notation. This allows

representing not only fractional quantities but also allows representing larger

numbers than would be possible with fixed-length integers. Notice that only

fractions that can be written with a denominator that’s a power of two can be

represented exactly. Again Scala goes along with this and provides two

different “sizes” (Float and Double).



CSCI 1320 September 10, 2012

Slide 15

Text Data

• Remember that computers represent everything using ones and zeros. How

do we then get text? well, we have to come up with some way of “encoding”

text characters as fixed-length sequences of ones and zeros — i.e., as

small(ish) numbers.

• Several different encodings have been used over the years. One of the

earliest schemes was ASCII, which uses 7 bits. That allows for 27 (128)

characters, which is plenty for numbers, the Roman alphabet, and

punctuation and other special characters. Great for English speakers, not so

much for others. Unicode originated as a 16-bit encoding, which was thought

to be plenty. That turned out not to be true, so Unicode is evolving. (Skim the

Wikipedia article to get a sense of what issues are involved.)

• Programming languages make different choices about how to represent

characters. Scala’s Char type is 16-bit Unicode. (Some older languages use

ASCII instead.) Single-character literals use single quotes.

Slide 16

Text Data, Continued

• Something else that’s needed often enough to be discussed at this point —

“strings” of characters.

• Again different programming languages make different choices, but most

represent string literals using text contained in double quotes.

Of course you might then ask how you put a double-quote character in a

string! The answer — “escape characters”. Described in more detail in

textbook.

• Unlike the other types we’ve talked about (and booleans, which we haven’t

but which are described in the book), strings are not fixed in size. That sort of

leads into the next topic . . .



CSCI 1320 September 10, 2012

Slide 17

Objects and Methods

• Text strings don’t really correspond to anything the hardware can work with as

directly as it works with integer and floating-point numbers. So how to

represent them is left somewhat more to the discretion of the programming

language. They’re a simple example of a kind of thing we might want to be

able to work with that’s somewhat more complicated than what the hardware

provides.

• To make working with things other than simple numbers easy, Scala, again

like many (but not all!) programming languages has a notion of objects (i.e., it

is an object-oriented (OO) language).

• Remember that we defined a type as a set of values together with some

operations on them? In OO-speak, an object is something with a value of a

particular type, and its methods are operations that the type says can be

done on it (e.g., arithmetic operations on integers).

Slide 18

Objects and Methods in Scala

• In Scala (unlike some other popular programming languages), everything is

an object. This makes some things very convenient (though it puts a certain

distance between the language and the hardware, which may have negative

effects on performance).

• Some operations on objects just do something, without any need for more

information (e.g., toInt converts a Double to an Int). Others requre

parameters (e.g., integer addition).

• Basic syntax for invoking an object’s methods requires a period, the name of

the method, parentheses, and any parameters. Scala allows many of these to

be omitted if it can figure out what you mean. (Indeed, some methods that

take no parameters must not be followed by parentheses.)



CSCI 1320 September 10, 2012

Slide 19

Objects and Methods in Scala

• Many useful “library” methods built into the language. The REPL provides

some support in the form of tab completion. (Try some things with integers

and strings!)

• Library methods include many for working with text strings, plus the math

object. See book for details.

Slide 20

Variables

• We know enough — more than enough — at this point to use the Scala REPL

as a calculator. But that’s not really programming, since if we want to do the

same calculation for different sets of values we’d have to retype everything.

• To do almost anything interesting, we need some way to save values and give

them names, so we can reference them again. So Scala, like most

programming languages, has a notion of variables, similar (but not identical!)

to variables in math. (The biggest difference is that some Scala variables can

take on different values as a calculation proceeds.)

• (To be continued.)



CSCI 1320 September 10, 2012

Slide 21

Minute Essay

• What is 1102 in base 10?

• What’s the (base 10) value of the largest number you can represent with 4

bits? (E.g., the largest number you can represent with 2 bits is 112, or 310.)

Slide 22

Minute Essay Answer

• 1102 is 610.

• 15 (11112).


