
CSCI 1320 September 19, 2012

Slide 1

Administrivia

• Reminder: Homework 2 due today (11:59pm).

• Homework 3 will be on the Web tomorrow. Due in a week. I will send mail.

• ACM is offering tutoring, by appointment. Details by e-mail.

• We need to find out how many students are planning to take CSCI courses in

the spring. Please reply to the e-mail about this.

Slide 2

Minute Essay From Last Lecture

• For many of you, access to a computer on which you can try things is

problematical. We need to resolve this.

• Script on “sample programs” page that you can use to turn in homework from

the command line. (Might be useful if you’re working remotely using PuTTY.)



CSCI 1320 September 19, 2012

Slide 3

Conditional Execution — Review/Recap

• Programs can select which path of execution to follow using if/else.

Works with statements and in expressions.

• To select from multiple possibilities, can nest this construct, or chain with

else if (as in “grades” example). Or . . .

Slide 4

One More Conditional Construct — Match

• There are situations in which we have a lot of if/else code testing the same

variable against various values. Somewhat repetitive, no? Some languages

provide more-compact way to express this (e.g., switch in C and Java).

• Scala provides something more general — match. Allows matching

specified variable with multiple conditions . . .



CSCI 1320 September 19, 2012

Slide 5

Match, Continued

• Simple example:

val c = readChar

c match {

case ’a’ => println("found a")

case ’b’ => println("found b")

case _ => println("not a or b")

}

This is already more powerful than what some languages provide, in that you

can match strings. Much more is possible. Details later.

Slide 6

Functions in Programming — Motivation

• Writing the same, or similar, code over and over is tedious and error-prone.

Can we somehow capture frequently-done computations in a way we can

reuse?

• Non-trivial programs can be huge (as much as tens of millions of lines of code

for an operating system, e.g.). Humans are not (usually?) very good at

understanding large and complicated things — need some way to “manage

complexity”.



CSCI 1320 September 19, 2012

Slide 7

Functions in Programming

• Functions are one way to solve both problems (code reuse and managing

complexity). Most if not all programming languages provide some way to do

this (possibly under another name, e.g., procedures).

• Similar, but not identical, to functions in mathematics.

In math, a function has a domain and a range, and maps elements of the

domain to elements of the range.

In programming, a function’s domain is represented by the number and types

of its parameters (a.k.a. arguments), and its range is represented by a return

type.

• A key difference is that functions in programming can have “side effects” —

effects other than mapping input(s) to output(s).

Slide 8

Functions in Scala

• To create a function in Scala, you use the keyword def and then give the

function’s name, parameters, return type, and some code. Return type can be

omitted if the function will be used only for its side effects.

• Very simple examples:

def sum(x : Int, y : Int) : Int = x + y

def hello() { println("hello") }



CSCI 1320 September 19, 2012

Slide 9

Functions in Scala, Continued

• To use a function, give its name and values for parameters.

• Very simple examples:

sum(10, 2)

hello() (can omit parentheses)

Slide 10

Example — Grades Program Revisited

• Now look again at the grades program. It starts by prompting for several input

values. It might be nice to include in the prompt a maximum value. So we

would be writing similar code over and over. Let’s make a function for that.

• (Also, let’s give names to those maximum values, to make the code more

understandable to humans.)



CSCI 1320 September 19, 2012

Slide 11

Example — Finding Roots of a Quadratic Equation

• As a rather math-y example, let’s write a function to compute and print the

roots of a quadratic equation

ax
2 + bx + c = 0

• We’ll use the formula

−b ±
√

b2 − 4ac

2a

and try to account for as many cases as we can . . .

• (We will just write the function for now, and test it interactively — load it into

the REPL with :load.)

Slide 12

Minute Essay

• None — quiz.


