
CSCI 1320 October 1, 2012

Slide 1

Administrivia

• Homework 1 grades mailed.

• Reminder: Homework 3 due today.

• Midterm next Wednesday.

• Quiz 2 Wednesday. Chapters 3 and 4 only.

Likely questions are “what does this program do/print?” or “write some code

to do some-particular-thing”.

(For the latter, I am less picky about syntax details than the

compiler/interpreter.)

Quiz solutions available on Web after class.

• Homework 4 will be on the Web early tomorrow; due next Monday. (I will send

mail.)

Slide 2

More Administrivia

• vi tip: If you put the cursor on a parenthesis or brace, vi will highlight it and

its match, if it has one. If you press%, the cursor moves to the matching brace,

again if there is one. Very helpful in diagnosing some kinds of problems!



CSCI 1320 October 1, 2012

Slide 3

Functions in Scala — Review/Recap

• Why functions? reduce duplication, “manage complexity”, allow code reuse.

• Define functions with keyword def, name, parameters, return type, body.

Simple example:

def sum(x : Int, y : Int) : Int = x + y

• Use functions by giving name, values for parameters in parentheses.

Examples:

val x = sum(10, 20)

println("x plus 1 = " + sum(x, 1))

Notice that values for parameters can be expressions.

Slide 4

Functions, Variable Scope, and Scala

• In many programming languages, every variable has a scope — the part of

the program within which it has meaning and can be referenced.

• In Scala, the scope of a variable starts with its declaration and continues to

the end of the block. Notice that a program might have different variables with

the same names and different scopes. Simple example:

def printIt(x : Int) { println(x) }

val x = 10

printIt(20)

What prints? Why?



CSCI 1320 October 1, 2012

Slide 5

Functions — Examples

• Last time we were writing a function to compute roots of a quadratic equation.

What we have is incomplete but good enough to demonstrate defining a

function. What do we need to add to make it a complete program/script?

• Another example we could modify to make use of functions: Change-counting

program repeats the logic to print value(s) only if nonzero.

Slide 6

Function Literals and Higher-Order Functions

• Scala lets you define “literals” for types such as Int and String. It also

lets you define literals for functions. That may seem like a strange thing to do,

but . . .

• It also supports “higher-order functions” — functions whose parameters are

themselves functions. An example from math is function composition. We will

see uses for this in programming later.



CSCI 1320 October 1, 2012

Slide 7

Repetition and Recursion — Overview

• Having if/else allows us to do a lot of things we couldn’t do before, but there

are still things we can’t do easily, mostly involving some sort of repetition.

Simple example — adding something to the grade program that would prompt

for six quiz scores. Another example might be trying to use our bounding-box

function to find a bounding box to enclose more than two rectangles, with the

choice of how many up to the user.

• Scala provides many ways to do this. We will look at recursion first.

Slide 8

Recursion

• Basic idea of recursion is to solve a problem by defining

– “base cases” we can solve easily, and

– a way of reducing other cases to “smaller” instances of the problem

• Simple examples abound in math; a traditional first example is computing the

factorial of an integer. We can define n! as the product of the integers from 1

through n, or we can use a recursive definition:

n! =







n · (n − 1)! if n > 1

1 otherwise

This is easy to convert into code in a language that supports recursion . . .



CSCI 1320 October 1, 2012

Slide 9

Recursion, Continued

• Key ideas in recursion:

– One or more base cases that can be solved without recursion.

– A way of splitting up other cases into one or more smaller recursive calls

plus some other logic.

• Very important that recursive calls be somehow smaller, so that you

eventually reach a base case!

• As one more example for now — function to “count down” (print numbers from

starting point through 1).

Slide 10

Sidebar: Input/Output Redirection

• Normally programs run from the command line write output to the terminal

window. Can instead “redirect” output to a file:

> outfile (overwrite)

>> outfile (append)

• Normally programs get input from the keyboard, but can also make them get

input from a file with <.

(How could this help you in checking your programs?)

• Finally, can use “pipes” (vertical-bar |) to have output from one program

become input to another. Example:

ruptime | grep diasw (show status of Linux-only machines)

Very powerful idea! this and some other ways of connecting simple programs

makes for a very powerful and flexible environment.



CSCI 1320 October 1, 2012

Slide 11

Minute Essay

• Are you watching the video lectures? if so, are you finding them helpful? if

not, why not?

• What have you found interesting about the programming assignments so far?

What has been difficult?


