
CSCI 1320 October 22, 2012

Slide 1

Administrivia

• Reminder: Homework 5 due Wednesday.

• Reminder: Quiz 3 Wednesday.

Slide 2

Minute Essay From Last Lecture

• People mentioned being able to work with lots of data easily (meaning simpler

programs). True!

• One person mentioned Sudoku puzzles. That’s indeed a problem a computer

can help with, but interestingly enough it can be quite slow.

• Another person mentioned finding all the words that can be made from a list

of letters. Another interesting problem!

• Someone else mentioned matrices — which in Scala (like many other

programming languages) are arrays of arrays.



CSCI 1320 October 22, 2012

Slide 3

Collection Methods — Review/Recap

• Many, many methods for operating on elements of a collection, more than we

have time to look at. Simple example from last week is revised versions of

array/list demo programs. A few more today, more examples in textbook.

Higher-order methods may seem strange at first. Practice helps!

• Textbook also, in passing, describes “curried” functions, needed in order to

understand “fold” methods. Also not an easy topic to understand, but should

make some sense with a bit of practice. For now okay to skim, just taking note

of syntax. Also okay to skim sections on types and variable argument lists.

Slide 4

Mutability and Aliasing

• Up to now we’ve taken a fairly abstract view of what variables are and how

things are stored in the computer’s memory. Need to know a bit more in order

for some things to make sense, though.

• So . . . In Scala all variables are what in Java are known as references —

pointers to other memory areas. Some of these pointed-to things (objects)

can be changed (mutable) and some can’t (immutable).

• It’s possible for two variables to point to the same object. If the object is

mutable, things can get interesting — changes made via one variable are

reflected when you access via the other. Sometimes this is useful; sometimes

it’s a source of trouble.



CSCI 1320 October 22, 2012

Slide 5

Argument Passing — Pass-By-Value

• (Terminology: I will use “argument” and “parameter” interchangeably. Some

writers make a distinction between the thing in the function and the thing in

the calling program. I will use the terms formal and actual to make that

distinction.)

• When you call a function as we’ve done so far, Scala passes all arguments by

value, into val variables. So you can’t change the variables themselves.

However, if the object being pointed to is mutable, it can be changed. Again

— sometimes useful, sometimes a source of trouble.

Slide 6

Argument Passing — Pass-By-Name

• Scala offers an additional mechanism for argument-passing: pass-by-name.

Not so easy to get the full picture of how it works, but used in some useful

standard methods and so worth mentioning now.

• Basic idea is that rather than passing a value to the called function/method

you pass a function, and the function is called every time the argument is

referenced (rather than only once).



CSCI 1320 October 22, 2012

Slide 7

Pass-By-Name and Collection Methods

• Arrays and lists have two methods that use pass-by-name: fill and

tabulate.

• Simple examples:

val a1 = Array.fill(4)(10)

val a2 = Array.tabulate(4){i => i+1)

val a3 = Array.fill(10)(readInt)

(Notice(?) that the syntax is that of a “curried” function.)

Slide 8

Collection Methods — More Examples

• We could write a palindrome-checking program that works the way we

want(?) — ignores everything except letters and is not case-sensitive.

• (Other examples as time permits.)



CSCI 1320 October 22, 2012

Slide 9

Minute Essay

• Same question as last time, sort of, but more general — can you think of

problems you have some interest in solving that seem amenable to being

solved with a program?


