
CSCI 1320 November 5, 2012

Slide 1

Administrivia

• Reminder: Homework 6 due Wednesday.

Slide 2

Sidebar: Multidimensional Arrays

• Arrays and lists are useful for representing the kinds of things we might use

subscripted variables in math. What about variables with multiple subscripts,

though? such as matrices?

• Like many programming languages, Scala provides “multidimensional arrays”

for this purpose. Like Java (on which it is based), Scala represents these as

arrays of arrays — which makes a kind of sense, no?

• (For now we will skip examples of using these. See textbook.)



CSCI 1320 November 5, 2012

Slide 3

Files — Overview

• One of the things that’s useful about computers is their ability to store large

amounts of information in a form that they can process — i.e., the ability to

store and work with files.

• “File” is a pretty broad and generic term and includes everything from simple

text files (such as the ones that contain your Scala programs) to

word-processing documents and images and digital representations of music

and video and . . .

• Up to now, our ability to work with files has been limited to what I/O

redirection provides — which is useful, but very limited since we can only

work with one source and one destination. Most programming languages

provide something more general.

Slide 4

Sidebar: Packages in Scala

• Before talking about working with files in Scala, useful to know a little about

packages.

• Basic idea of packages is to provide some way to organize lots and lots of

code: Languages may include extensive libraries. Real applications typically

involve quite a lot of code. How to organize? One way is to somehow group

related functionality. Scala (and Java) does this using packages. Idea is

similar to folders/directories for organizing files.

• Packages also provide a nice mechanism for avoiding naming collisions —

i.e., names of things (such as List) don’t have to be unique across

everything in the library and your own code, only within a package.



CSCI 1320 November 5, 2012

Slide 5

Sidebar: Packages in Scala, Continued

• You may notice that when you type an expression into the interpreter, it tells

you its type, and sometimes the type is something simple (e.g., Int) but

sometimes it’s less scrutable — e.g., for a range (such as 0 to 5) it’s

scala.collection.immutable.Range.Inclusive

The lower-case parts identify the “package” containing the library code for

ranges.

You could use this whole name as the type for a function parameter, but that’s

unwieldy, so . . .

• import gives you a way to tell the Scala compiler/interpreter where to look

for things it couldn’t otherwise find. (The above isn’t the best example

because everything in scala.collection is automatically imported.)

Slide 6

Files in Scala

• Simplest way to read files in Scala is with scala.io.Source (or just

Source with an import scala.io.Source):

Source.fromFile("somefile")

• This gives you back something that the interpreter claims is an “iterator”.

What’s that . . .



CSCI 1320 November 5, 2012

Slide 7

Sidebar: Iterators

• For arrays and lists you know it’s sometimes useful to be able to go through

every element of the array/list and do something (print it, or add it to a running

total, e.g.). It’s useful to be able to do that with other kinds of collections too,

(e.g., lines in a file).

• Abstract term for something that lets you “visit” each element of a collection

— iterator. As used in Scala/Java, it’s something with two operations, “is there

another element?” and “give me the next element”.

• Something to know about iterators — not necessarily reusable (so must be

somehow reset or recreated if you want to go through the collection more

than once).

Slide 8

Files in Scala, Continued

• What you get back from fromFile is an iterator over the characters of the

file, and you can apply to it lots of the methods you use on arrays and lists.

• To read a line at a time — getLines, which gives you an iterator over

Strings.

• After using a file, good practice to “close” it (free up any resources used to

manage it).



CSCI 1320 November 5, 2012

Slide 9

Files in Scala, Continued

• Other ways of working with input files, and all ways of working with output

files, use the underlying Java libraries.

• Two simple ones — Scanner for input, PrintWriter for output.

Simple example:

import java.io.File

import java.io.PrintWriter

val pw = new PrintWriter(new File("out.txt"))

pw.println("hello world")

pw.close

(More examples in textbook.)

Slide 10

Examples

• (Simple examples.)

• Checkbook-like program revisited . . .



CSCI 1320 November 5, 2012

Slide 11

Minute Essay

• None — quiz.


