
CSCI 1320 November 7, 2012

Slide 1

Administrivia

• Reminder: Homework 6 due today.

• Next homework on the Web; due in a week. Quiz 5 also next week.

Slide 2

Files — Review/Recap

• Scala makes it fairly easy to get text input from a file, with

scala.io.Source.fromFile.

• Creating text files is somewhat more complicated and uses the underlying

Java libraries, but still very doable.

• Simple example — “sum integers from a file” (previous class).

• Less-simple example — “checkbook with transactions” program started in

previous class. Here we use files to save data between executions of the

program. Finish draft from last time. But first . . .



CSCI 1320 November 7, 2012

Slide 3

Sidebar: Command-Line Arguments in Scala

• You’ve noticed that many commands (vi, scala, etc.) can be followed by

additional text? this is one more way of getting input to a program —

command-line arguments.

• In Scala, you can access these arguments via an array (of Strings) called

args.

• Often a good way to specify things such as filenames.

Slide 4

A Little About Objects and Classes

• A possible source of confusion at this point — some things (e.g., description

of packages from last time, Scala API) only make sense if you know a little

about objects and classes. Key ideas of “object-oriented programming”, a

major topic in follow-on course CSCI 1321.

• History of object-oriented programming goes back to (relatively!) early work

on simulating physical systems with programs.

• If writing such a simulation, useful to have a nice way in the program to

represent physical objects being simulated (e.g., a car in a simulation of

traffic) and groups of similar objects (e.g., cars — all distinct but have

common features).

• “Object-oriented programming” — generalize this idea to more abstract things

(e.g., rational numbers, components of a GUI). Key idea is that objects

somehow encapsulate both data (variables) and functionality (code).



CSCI 1320 November 7, 2012

Slide 5

A Little About Objects and Classes in Scala

• Scala classes represent different types — simple ones such as Int and

String, more complex ones such as io.Source and

java.io.PrintWriter. Class definitions (somewhat analogous to

function definitions) include variables and “methods” (functions that work on

instances of the class).

• Scala objects are either instances of a class (e.g., a single Int or String)

or singleton objects such as math. Definitions of singleton objects can

include variables and methods.

• Keyword new creates an instance of a class.

• Syntax for accessing/invoking data and methods uses dot/period (e.g.,

math.Pi or math.sqrt(2).

• API shows objects and classes (sometimes have both with the same name —

e.g., Int).

Slide 6

Case Classes — Motivation

• Arrays, lists, and loops were all introduced with the comment that even

without them you can compute anything computable, but all of these

constructs make it easier to do some things, or to do them in a way that may

be easier for to understand.

• Case classes similarly don’t really add any new functionality, but they do give

us a better way to group related pieces of information — we can do that with

tuples, sort of, but tuples give us no way to indicate what their elements

mean. (For example, a tuple of two Ints could represent a rational number

or a point in 2D space.)



CSCI 1320 November 7, 2012

Slide 7

Case Classes

• Case classes are a very simple example of a user-defined type (analogous to

predefined types such as Int, String, List, etc.). (In object-oriented

terms, in their simplest form they’re a simple kind of class, with data/variables

only.)

• What they give you is a way to define a named type (e.g., Rational) that

represents a collection of related objects (e.g., the numerator and

denominator) and give the parts names:

case class Rational(numerator : Int, denominator : Int)

val r1 = Rational(1, 4)

println(r1.numerator + "/" + r1.denominator)

Slide 8

Case Classes, Continued

• You can define operations within the class, or you can do that separately

using functions, e.g.:

def rationalToString(r : Rational) : String = {

r.numerator + "/" + r.denominator

}

• Example — one more version of the “checkbook with transactions” program

(next time).



CSCI 1320 November 7, 2012

Slide 9

Minute Essay

• We looked at one example of something you can do with files, maybe

interesting. Can you think of other programs you could now write that might

be interesting?


