CSCI 1320 November 7, 2012

Administrivia

o Reminder: Homework 6 due today.

® Next homework on the Web; due in a week. Quiz 5 also next week.

Slide 1

Files — Review/Recap

e Scala makes it fairly easy to get text input from a file, with
scal a.io. Source.fronFil e.

e Creating text files is somewhat more complicated and uses the underlying
Java libraries, but still very doable.

Slide 2 o Simple example — “sum integers from a file” (previous class).

® Less-simple example — “checkbook with transactions” program started in
previous class. Here we use files to save data between executions of the

program. Finish draft from last time. But first . ..




CSCI 1320 November 7, 2012

Sidebar: Command-Line Arguments in Scala

e You've noticed that many commands (Vi , Scal a, etc.) can be followed by
additional text? this is one more way of getting input to a program —
command-line arguments.

® In Scala, you can access these arguments via an array (of St r i ngs) called
Slide 3 args.

e Often a good way to specify things such as filenames.

A Little About Objects and Classes

e A possible source of confusion at this point — some things (e.g., description
of packages from last time, Scala API) only make sense if you know a little
about objects and classes. Key ideas of “object-oriented programming”, a
major topic in follow-on course CSCI 1321.

e History of object-oriented programming goes back to (relatively!) early work

Slide 4 on simulating physical systems with programs.

e |f writing such a simulation, useful to have a nice way in the program to
represent physical objects being simulated (e.g., a car in a simulation of
traffic) and groups of similar objects (e.g., cars — all distinct but have

common features).

e “Object-oriented programming” — generalize this idea to more abstract things
(e.g., rational numbers, components of a GUI). Key idea is that objects
somehow encapsulate both data (variables) and functionality (code).

. J




CSCI 1320 November 7, 2012

(
A Little About Objects and Classes in Scala

e Scala classes represent different types — simple ones such as | nt and
St ri ng, more complex ones such asi 0. Sour ce and
java.io.PrintWiter. Class definitions (somewhat analogous to
function definitions) include variables and “methods” (functions that work on

instances of the class).

Slide 5 e Scala objects are either instances of a class (e.g., a single | nt or St ri ng)
or singleton objects such as Mat h. Definitions of singleton objects can

include variables and methods.
e Keyword New creates an instance of a class.

e Syntax for accessing/invoking data and methods uses dot/period (e.g.,
mat h. Pi ormat h. sqrt (2).

e API shows objects and classes (sometimes have both with the same name —
eg., | nt).

. J

Case Classes — Motivation

e Arrays, lists, and loops were all introduced with the comment that even
without them you can compute anything computable, but all of these
constructs make it easier to do some things, or to do them in a way that may
be easier for to understand.

Slide 6 e Case classes similarly don’t really add any new functionality, but they do give
us a better way to group related pieces of information — we can do that with
tuples, sort of, but tuples give us no way to indicate what their elements
mean. (For example, a tuple of two | Nt s could represent a rational number
or a point in 2D space.)




CSCI 1320 November 7, 2012

4 )

Case Classes

e Case classes are a very simple example of a user-defined type (analogous to
predefined types such as | nt, St ri ng, Li st etc.). (In object-oriented
terms, in their simplest form they're a simple kind of class, with data/variables
only.)

Slide 7 e What they give you is a way to define a named type (e.g., Rat i onal ) that
represents a collection of related objects (e.g., the numerator and

denominator) and give the parts names:
case class Rational (nunerator : Int, denom nator } Int)
val rl = Rational (1, 4)

println(rl. numerator + “/" + r1.denom nator)

Case Classes, Continued

e You can define operations within the class, or you can do that separately
using functions, e.g.:
def rational ToString(r : Rational) : String = {
r.numerator + "/" + r.denom nator

Slide 8 }
o Example — one more version of the “checkbook with transactions” program

(next time).




CSCI 1320 November 7, 2012

o We looked at one example of something you can do with files, maybe
interesting. Can you think of other programs you could now write that might

be interesting?

Slide 9




