
CSCI 1320 January 31, 2012

Slide 1

Administrivia

• Reminder: Quiz 1 Thursday. Questions based on reading and lectures so far

(through today). Likely to focus on material in chapter 3. “Open book/notes”,

meaning access to textbook, your notes, anything on course Web site.

• Homework 2 on the Web. Due a week from today. (If you have not turned in

Homework 1 — please do. Ask if questions.)

• (Review minute essay from last time. Notice that when there’s an answer it

will be in the not-preliminary version of the slides/notes online.)

• (Also, in minute essays you can ask any questions that occur to you about the

class or related subjects, and I’ll try to answer.)

Slide 2

Scala and Representing Data — Review/Recap

• All data in Scala (and many/most other programming languages) has a “type”

(that among other things defines a set of possible values and operations on

those values).

• Numeric types include Int, Long, Float, Double. Operations include

familiar(?) arithmetic operators.

• Text types include Char, String. Operations on String include +

defined to mean string concatenation.



CSCI 1320 January 31, 2012

Slide 3

Objects and Methods — Review

• Text strings don’t really correspond to anything the hardware can work with as

directly as it works with integer and floating-point numbers. So how to

represent them is left somewhat more to the discretion of the programming

language. They’re a simple example of a kind of thing we might want to be

able to work with that’s somewhat more complicated than what the hardware

provides.

• To make working with things other than simple numbers easy, Scala, again

like many (but not all!) programming languages has a notion of objects (i.e., it

is an object-oriented (OO) language).

• Remember that we defined a type as a set of values together with some

operations on them? In OO-speak, an object is something with a value of a

particular type, and its methods are operations that the type says can be

done on it (e.g., arithmetic operations on integers).

Slide 4

Objects and Methods in Scala

• In Scala (unlike some other popular programming languages), everything is

an object. This makes some things very convenient (though it puts a certain

distance between the language and the hardware, which may have negative

effects on performance).

• Some operations on objects just do something, without any need for more

information (e.g., toInt converts a Double to an Int). Others requre

parameters (e.g., integer addition).

• Basic syntax for invoking an object’s methods requires a period, the name of

the method, parentheses, and any parameters. Scala allows many of these to

be omitted if it can figure out what you mean. (Indeed, some methods that

take no parameters must not be followed by parentheses — e.g.,

toDouble.)



CSCI 1320 January 31, 2012

Slide 5

Objects and Methods in Scala

• Many useful “library” methods built into the language. The REPL provides

some support in the form of tab completion. (Try some things with integers

and strings!)

• Library methods include many for working with text strings, plus the math

object. See book for details.

Slide 6

Variables

• We know enough — more than enough — at this point to use the Scala REPL

as a calculator. But that’s not really programming, since if we want to do the

same calculation for different sets of values we’d have to retype everything.

• To do almost anything interesting, we need some way to save values and give

them names, so we can reference them again. So Scala, like most

programming languages, has a notion of variables, similar (but not identical!)

to variables in math. (The biggest difference is that some Scala variables can

take on different values as a calculation proceeds.)

• Basic syntax for defining variables requires a keyword (val or var), a type,

a name, and a value. Can omit type if Scala can guess. val versus var?

Former can’t change value, latter can (with assignment statement, almost

identical to definition but without var). Value is expressed as an expression,

which can mention other previously-defined variables and which at runtime is

evaluated to give a value.



CSCI 1320 January 31, 2012

Slide 7

What We Know How To Do — Review

• Write expressions including numeric and character-data literals.

• Define variables and give them values.

• “Print” things (display them on standard output, in techiespeak). (How do we

print values of variables?)

• Get input from standard input (“the keyboard” for now) with readInt.

Slide 8

Example

• As a first example, write a program that “makes change” — for a given

number of cents, says how many dollars, quarters, etc., are needed.

• First step — understand the problem. Often helpful to work through some

examples. (Don’t skip this!)

• Next, figure out how to get the same result(s) by using things in your “bag of

tricks”.



CSCI 1320 January 31, 2012

Slide 9

Minute Essay

• Anything today unclear?


