
CSCI 1320 February 7, 2012

Slide 1

Administrivia

• Reminder: Homework 2 due today.

Script on “sample programs” page that you can use to turn in homework from

the command line. (Might be useful if you’re working remotely using PuTTY.)

• Sample solutions for quizzes, and code from class, will usually be on the Web

sometime after class.

• Homework 3 on the Web; due next Tuesday.

Slide 2

Conditional Execution — Review/Example

• “If/else” allows for conditional execution of statements and also for expressing

similar idea within expressions.

• As a simple example, consider a program to calculate numeric and letter

grades as described in the syllabus. (We’ll just do a sketch for now — a “proof

of concept” we can maybe expand on later.)

• Notice that this program seems to involve some repetition. That’s a good

lead-in to . . .



CSCI 1320 February 7, 2012

Slide 3

Functions in Programming — Motivation

• Writing the same, or similar, code over and over is tedious and error-prone.

Can we somehow capture frequently-done computations in a way we can

reuse?

• Non-trivial programs can be huge (as much as tens of millions of lines of code

for an operating system, e.g.). Humans are not (usually?) very good at

understanding large and complicated things — need some way to “manage

complexity”.

Slide 4

Functions in Programming

• Functions are one way to solve both problems (code reuse and managing

complexity). Most if not all programming languages provide some way to do

this (possibly under another name, e.g., procedures).

• Similar, but not identical, to functions in mathematics.

In math, a function has a domain and a range, and maps elements of the

domain to elements of the range.

In programming, a function’s domain is represented by the number and types

of its parameters (a.k.a. arguments), and its range is represented by a return

type.

• A key difference is that functions in programming can have “side effects” —

effects other than mapping input(s) to output(s).



CSCI 1320 February 7, 2012

Slide 5

Functions in Scala

• To create a function in Scala, you use the keyword def and then give the

function’s name, parameters, return type, and some code. Return type can be

omitted if the function will be used only for its side effects.

• Very simple examples:

def sum(x : Int, y : Int) : Int = x + y

def hello() { println("hello") }

Slide 6

Functions in Scala, Continued

• To use a function, give its name and values for parameters.

• Very simple examples:

sum(10, 2)

hello() (can omit parentheses)



CSCI 1320 February 7, 2012

Slide 7

Example — Grades Program Revisited

• Now look again at the grades program. It starts by prompting for several input

values. It might be nice to include in the prompt a maximum value. So we

would be writing similar code over and over. Let’s make a function for that.

• (Also, let’s give names to those maximum values, to make the code more

understandable to humans.)

Slide 8

Example — Finding Roots of a Quadratic Equation

• As a rather math-y example, let’s write a function to compute and print the

roots of a quadratic equation

ax
2 + bx + c = 0

• We’ll use the formula

−b ±
√

b2 − 4ac

2a

and try to account for as many cases as we can . . .

• (We will just write the function for now, and test it interactively — load it into

the REPL with :load. To be continued next time.)



CSCI 1320 February 7, 2012

Slide 9

Minute Essay

• How did the quiz compare to your expectations? with regard to difficulty and

topic?

• Do you have any questions about the material so far?


