
CSCI 1320 February 23, 2012

Slide 1

Administrivia

• Quiz 3 Tuesday. Questions will probably be similar to those on Quiz 2 but

including material on functions and recursion.

• Reminder: Homework 4 due Tuesday.

• Notice that quiz solutions are on the Web (usually posted shortly after the

quiz).

• Homework 1 graded, grades mailed, sample “solution” online (for this

assignment, a collection of possibly-useful comments on vim).

• Reading assignment for today corrected.

• Minor correction to countdown function from last time. (Notice/recall that

code from class should mostly show up on the “sample programs” page

sometime after class.)

Slide 2

Recursion for Repetition — Review/Recap

• One way to repeat something a fixed number of times, or until some condition

is true, is with recursion.

• Examples last time included factorial, “count down”. (Notice that we can

easily make a function a complete program/script by just adding something to

the end to get input from the user. Let’s do that for countdown.scala

from last time.)

• Example in book of using recursion to compute sum of numbers.

• Another example — make our count-out-change program keep asking for

input until the user says to quit, rather than doing only one calculation.



CSCI 1320 February 23, 2012

Slide 3

One More Conditional Construct — Match

• There are situations in which we have a lot of if/else code testing the same

variable against various values. Somewhat repetitive, no? Some languages

provide more-compact way to express this (e.g., switch in C and Java).

• Scala provides something more general — match. Allows matching

specified variable with multiple conditions . . .

Slide 4

Match, Continued

• Simple example:

val c = readChar

c match {

case ’a’ => println("found a")

case ’b’ => println("found b")

case _ => println("not a or b")

}

This is already more powerful than what some languages provide, in that you

can match strings. Much more is possible. Details later.



CSCI 1320 February 23, 2012

Slide 5

Arrays and Lists — Preview

• With what we’ve done so far we have enough tools to compute anything we

want to compute.

• However, some things are awkward (repetition), and we don’t yet have a

convenient way to store many values — something similar to subscripted

values in math. (Think about writing some sort of drawing program, one for

which our bounding-box function might be useful. Probably you want to

somehow store a lot of rectangles or more-general shapes. How?)

• Most programming languages give you a way to represent collections. Exactly

what you get depends on the language — e.g., C gives you only something

quite primitive (but close to what the hardware can do), Java gives you

something more abstract/useful, and Scala goes even further.

Slide 6

Minute Essay

• Can you think of anything for which arrays and lists would be helpful?


