
CSCI 1320 March 20, 2012

Slide 1

Administrivia

• Homework 5 on the Web; due next Tuesday.

Slide 2

Minute Essay From Last Lecture

• Minute essay question from before the midterm: How much time outside class

do you spend on this course?

• Answers varied, but many less than general-rule “one credit hour means three

hours total, in and out of class”.

• A few people mentioned spending time just trying things in the REPL. A good

way to learn!

CSCI 1320 March 20, 2012

Slide 3

Arrays, Lists, and Recursion — Review/Recap

• Recall from before midterm — arrays and lists, and example programs using

recursion to work on them.

• Just this much gives us the ability to do things we couldn’t before. But both

types of collections also provide a wide range of interesting(?) methods

(“collection methods”). Before we dive into those, however . . .

Slide 4

Higher-Order Functions — Review/Recap

• “Higher-order functions” (first discussed in chapter 5) are functions that use

other functions as parameters (or as return values). Very useful concept,

supported in fairly different ways in different languages.

• As an example of how this is useful — summing all elements of an array

versus computing their product, versus finding the smallest or largest

element, etc. Basic computation (a reduction) involves combining elements

pairwise with a binary operator, and by using a higher-order functions we

don’t have to repeat the parts that are the same.

CSCI 1320 March 20, 2012

Slide 5

Defining Higher-Order Functions in Scala

• Syntax illustrated by our example from class:

def arrayCombine(a : Array[Int], startIndex : Int,

combine : (Int, Int) => Int, identity : Int) : Int = { /* */ }

where combine is a parameter that is itself a function(!).

(I could have put all of that on one line, but it would have been long.)

• Within the body of the function (arrayCombine in the example) we can

call the parameter function (combine) as we usually do, e.g.,

combine(1, 2) to call the function with parameters 1 and 2.

Slide 6

Using Higher-Order Functions in Scala

• One option for function parameters is a named function:

def add(x : Int, y : Int) : Int = { x + y }

arrayCombine(a, 0, add, 0)

• Another option is a function literal:

arrayCombine(a, 0, (x, y) => (x + y), 0)

• Yet another option is a special form of a function literal:

arrayCombine(a, 0, _ + _, 0)

CSCI 1320 March 20, 2012

Slide 7

Example(s) Revisited

• We could now revise our array demo program to do still more things with the

array — find minimum and maximum elements, for example.

• We could add similar functionality to our list demo program.

Slide 8

Collection Methods — Overview

• As noted earlier, both arrays and lists provide a wide range of interesting(?)

methods. (“Methods”? Briefly, special type of functions, described a bit in

chapter 3.) The textbook lists some of them and is a good starting point. For

full details, however . . .

CSCI 1320 March 20, 2012

Slide 9

The Scala API

• In context, API means “Application Programming Interface”. Meant as

complete documentation of the language’s library functions, methods, etc.

Many languages and libraries have one of these.

• The standard presentation of Scala’s API is descended from Java and is

nicely organized for online browsing (link from course “Useful links” page).

Worthwhile spending a bit of time learning how to find things in it (though not

everything will make sense yet).

Slide 10

The Scala API — Tips/Gotchas

• Notice — some entries in left frame show two icons (“o” and “c”). “c” shows

things you can do with objects of whatever type it is (e.g., Ints). “o” shows

things you can do with Int itself — e.g., get minimum and maximum value.

• Some things are documented in unobvious places (e.g., ArrayOps,

StringOps, RichInt).

CSCI 1320 March 20, 2012

Slide 11

Collection Methods — Basics

• Some methods to extract parts of a collection:

drop, init, last, slice, splitAt, take, takeRight

• Some methods to test something about a collection:

contains, endsWith, isEmpty, nonEmpty, startsWith

indexOf, lastIndexOf

• Some other useful methods and variables:

foreach, mkString, reverse, zip, zipWithIndex, length,

size

Slide 12

Collection Methods — Basics Continued

• sum and product work on objects that support addition and multiplication.

• min and max work on objects that can be put in order.

• Strings have split.

CSCI 1320 March 20, 2012

Slide 13

Collection Methods — Higher-Order Methods

• exists, forall

• filter, partition

• map

• reduceLeft, foldLeft

Slide 14

Examples

• Right away we have alternatives to most of the functions in our “demo”

program. (But that’s okay — they were good practice.)

• A somewhat more interesting example: Find out whether a line of text is a

palindrome. Simplest version is, well, simple with reverse. If we want to

implement the usual definition, though, that looks only at letters and ignores

case?

CSCI 1320 March 20, 2012

Slide 15

Minute Essay

• Can you think of other interesting things you could do with some of these

methods?

