CSCI 1320 April 10, 2012

Administrivia

o Homework 6 deadline extended to Thursday.

Slide 1

4)

Loops — Review

e f Or loops (really “for comprehensions”) useful when how many times you
want the loop to execute is known — e.g., depends on the size of an array or
list. (See loop versions of array/list demo programs for examples. Note that
while the array program uses a range of indices and the list doesn't, either
way works with both arrays and lists. Style issue, maybe.)

Slide 2 e whi | e anddo whi | e loops useful when you don’t necessarily know

ahead of time how many times — e.g., keep going until input is “quit”.

e Both kinds are apt to make use of var variables. Notice that it is perfectly
okay, for this kind of variable, to calculate and store a new value based on the
current value, e.g.,

var n =0
and later
n=n+1

. J

CSCI 1320 April 10, 2012

Loop Examples, Continued

e (Finish/improve “checkbook balance” program frm last time.)

e Here too redirection might be useful — e.g., put a list of commands in
i nput . t Xt (using a text editor!) and then run using
scal a bal ance-pl us.scala < input.txt

Slide 3 or the somewhat UNIX-geek-y

cat input.txt - | scala bal ance-plus. scal a

to first process the inputin i Nput . t Xt and then accept interactive input.

But really this is a good motivating example for the next topic (files).

Sidebar: Multidimensional Arrays

e Arrays and lists are useful for representing the kinds of things we might use
subscripted variables in math. What about variables with multiple subscripts,

though? such as matrices?

e Like many programming languages, Scala provides “multidimensional arrays”
Slide 4 for this purpose. Like Java (on which it is based), Scala represents these as

arrays of arrays — which makes a kind of sense, no?

e (For now we will skip examples of using these. See textbook.)

CSCI 1320 April 10, 2012

Files — Overview

e One of the things that's useful about computers is their ability to store large
amounts of information in a form that they can process — i.e., the ability to
store and work with files.

e “File” is a pretty broad and generic term and includes everything from simple
slide 5 text files (such as the ones that contain your Scala programs) to
word-processing documents and images and digital representations of music

and video and ...

e Up to now, our ability to work with files has been limited to what I/O
redirection provides — which is useful, but very limited since we can only
work with one source and one destination. Most programming languages

provide something more general.

Sidebar: Packages in Scala

e Before talking about working with files in Scala, useful to know a little about
packages.

e Basic idea of packages is to provide some way to organize lots and lots of
code: Languages may include extensive libraries. Real applications typically

Slide 6 involve quite a lot of code. How to organize? One way is to somehow group

related functionality. Scala (and Java) does this using packages. Idea is

similar to folders/directories for organizing files.

e Packages also provide a nice mechanism for avoiding naming collisions —
i.e., names of things (such as Li St) don’t have to be unique across
everything in the library and your own code, only within a package.

CSCI 1320 April 10, 2012

Sidebar: Packages in Scala, Continued

e You may notice that when you type an expression into the interpreter, it tells
you its type, and sometimes the type is something simple (e.g., | nt) but
sometimes it’s less scrutable — e.g., for arange (suchas O t o 5)its

scal a. col | ecti on. i nmut abl e. Range. | ncl usi ve
Slide 7 The lower-case parts identify the “package” containing the library code for
ranges.

You could use this whole hame as the type for a function parameter, but that's

unwieldy, so ...

e i Nport gives you a way to tell the Scala compiler/interpreter where to look
for things it couldn’t otherwise find. (The above isn't the best example
because everything in scal a. col | ect i on is automatically imported.)

Files in Scala

e Simplest way to read files in Scala is with scal a. i 0. Sour ce (or just
Sour ce withani nport scal a. i 0. Sour ce):

Source. fronFil e("sonefile")

e This gives you back something that the interpreter claims is an “iterator”.
Slide 8 What's that . ..

CSCI 1320 April 10, 2012

Sidebar: Iterators

e For arrays and lists you know it's sometimes useful to be able to go through
every element of the array/list and do something (print it, or add it to a running
total, e.g.). It's useful to be able to do that with other kinds of collections too,
(e.g., lines in a file).

Slide 9 e Abstract term for something that lets you “visit” each element of a collection
— iterator. As used in Scala/Java, it's something with two operations, “is there

another element?” and “give me the next element”.

o Something to know about iterators — not necessarily reusable (so must be
somehow reset or recreated if you want to go through the collection more
than once).

4)

Files in Scala, Continued

e What you get back from f r onfi | e is an iterator over the characters of the
file, and you can apply to it lots of the methods you use on arrays and lists.

e Toread aline at atime — get Li nes, which gives you an iterator over
Strings.

Slide 10 e After using a file, good practice to “close” it (free up any resources used to

manage it).

CSCI 1320 April 10, 2012

Files in Scala, Continued

e Other ways of working with input files, and all ways of working with output

files, use the underlying Java libraries.

e Two simple ones — Scanner for input, Pri nt Wi t er for output.
Simple example:

Slide 11 inmport java.io.File

inmport java.io.PrintWiter

val pw = new PrintWiter(new File("out.txt"))
pw. println("hello world")

pw. cl ose

(More examples in textbook.)

e \We looked at a few things you can do with files, some of them maybe
interesting. Can you think of other programs you could now write that might

be interesting?

Slide 12

