
CSCI 1320 April 12, 2012

Slide 1

Administrivia

• Reminder(?): Quiz 5 Tuesday. Likely topic is loops.

• Reminder: Homework 6 due today.

• Okay to skim long examples in chapters 9 and 10.

Slide 2

Minute Essay From Last Lecture

• (What interesting things can you do given the ability to work with files in

programs?)

• Many interesting answers. I will say more another time and/or respond

individually.

• Two key/common ideas — “persistent data” (save results from one execution

for the next) and “big data” (more than you would type in interactively, possibly

from some source such as a Web site).



CSCI 1320 April 12, 2012

Slide 3

Files — Review/Recap

• Scala makes it fairly easy to get text input from a file, with

scala.io.Source.fromFile.

• Creating text files is somewhat more complicated and uses the underlying

Java libraries, but still very doable.

• Simple examples — “sum integers from a file” (from last time, simplified a bit,

showing input only), “translate text to upper case” (on sample programs page,

showing input/output).

Slide 4

Sidebar: Command-Line Arguments in Scala

• You’ve noticed that many commands (vi, scala, etc.) can be followed by

additional text? this is one more way of getting input to a program —

command-line arguments.

• In Scala, you can access these arguments via an array (of Strings) called

args.

• Often a good way to specify things such as filenames.



CSCI 1320 April 12, 2012

Slide 5

A Little About Objects and Classes

• A possible source of confusion at this point — some things (e.g., description

of packages from last time, Scala API) only make sense if you know a little

about objects and classes. Key ideas of “object-oriented programming”, a

major topic in follow-on course CSCI 1321.

• History of object-oriented programming goes back to (relatively!) early work

on simulating physical systems with programs.

• If writing such a simulation, useful to have a nice way in the program to

represent physical objects being simulated (e.g., a car in a simulation of

traffic) and groups of similar objects (e.g., cars — all distinct but have

common features).

• “Object-oriented programming” — generalize this idea to more abstract things

(e.g., rational numbers, components of a GUI). Key idea is that objects

somehow encapsulate both data (variables) and functionality (code).

Slide 6

A Little About Objects and Classes in Scala

• Scala classes represent different types — simple ones such as Int and

String, more complex ones such as io.Source and PrintWriter.

Class definitions (somewhat analogous to function definitions) include

variables and “methods” (functions that work on instances of the class).

• Scala objects are either instances of a class (e.g., a single Int or String)

or singleton objects such as math. Definitions of singleton objects can

include variables and methods.

• Keyword new creates an instance of a class.

• Syntax for accessing/invoking data and methods uses dot/period (e.g.,

math.Pi or math.sqrt(2).

• API shows objects and classes (sometimes have both with the same name —

e.g., Int).



CSCI 1320 April 12, 2012

Slide 7

Case Classes — Motivation

• Arrays, lists, and loops were all introduced with the comment that even

without them you can compute anything computable, but all of these

constructs make it easier to do some things, or to do them in a way that may

be easier for to understand.

• Case classes similarly don’t really add any new functionality, but they do give

us a better way to group related pieces of information — we can do that with

tuples, sort of, but tuples give us no way to indicate what their elements

mean. (For example, a tuple of two Ints could represent a rational number

or a point in 2D space.)

Slide 8

Case Classes

• Case classes are a very simple example of a user-defined type (analogous to

predefined types such as Int, String, List, etc.). (In object-oriented

terms, they’re a simple kind of class, with data/variables only.)

• What they give you is a way to define a named type (e.g., Rational) that

represents a collection of related objects (e.g., the numerator and

denominator) and give the parts names:

case class Rational(numerator : Int, denominator : Int)

val r1 = Rational(1, 4)

println(r1.numerator + "/" + r1.denominator)



CSCI 1320 April 12, 2012

Slide 9

Case Classes, Continued

• You don’t get the ability to define, within the class, operations for the type, but

you could do that separately in functions:

def rationalToString(r : Rational) : String = {

r.numerator + "/" + r.denominator

}

• (If you also want to define operations, you need full-fledged classes. Next

semester, for those continuing!)

• (Example(s)?)

Slide 10

Minute Essay

• We have only a few classes left. Topics I want to address include what to do

about errors (such as what happens when you try to use readInt and the

text isn’t a number), a little about sorting and searching (for those students

continuing to CSCI 1321), and little about GUIs in Scala.

• Any thoughts about which of these would help/interest you most?


