
CSCI 1320 (Principles of Computer Science I), Fall 2014

Homework 3

Credit: 30 points.

1 Reading

Be sure you have read chapters 5 and 6.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
and the assignment (e.g., “csci 1320 homework 3” or “CS1 hw3”). You can develop your programs
on any system that provides the needed functionality, but I will test them on one of the depart-
ment’s Linux machines, so you should probably make sure they work in that environment before
turning them in.

1. (5 points) For the previous assignment you wrote a Scala program to compute U.S. in-
come tax given taxable income. It probably involved some rather repetitive code, since the
calculations for all the income tax brackets are similar (multiply by a percentage and then
subtract something) but using different rates and subtraction amounts. Your mission for this
problem is to reduce the amount of near-duplicate code in your program by using a function
to compute the tax. This function (you choose its name) should take as parameters taxable
income, the rate to multiply by, and the amount to subtract, and it should return the amount
of tax. It probably makes the most sense for the function to do the whole computation,
including rounding.

To the user this program will look the same as the previous program (prompting the user for
taxable income and then printing either an amount of tax or a message about using the tax
table), but the code should be simpler and with less repetition.

2. (5 points) Write a Scala program that uses a recursive function to compute b to the e-th
power (b multiplied by itself e times), where b and e are Ints and e is not negative. The
program should prompt for b and e and print the result of computing b to the e-th power.
It should print an error message if e is less than zero. Examples:

• 10 to the 2nd power is 100.

• -2 to the 3rd power is -8.

• -1 to the 4th power is 1.

• Any number to the 0th power is 1 (with the possible exception of 0 to the 0th power,
which is probably not a sensible thing to try to compute, so you could print an error
message).

1



CSCI 1320 Homework 3 Fall 2014

3. (10 points) Write a Scala program that uses a recursive function to “count” up or down,
specifying a starting value start, an ending value end, and an increment incr. (All three
values should be Ints.) The function should then count starting at start, incrementing by
incr, and stopping when the next value would go beyond end. Examples:

• count(1, 6, 1) should print the values 1, 2, 3, 4, 5, 6.

• count(6, 1, -1) should print the values 6, 5, 4, 3, 2, 1.

• count(1, 10, -1) should print the value 1.

• count(4, 10, 2) should print the values 4, 6, 8, 10.

• count(4, 10, 4) should print the values 4, 8.

4. (10 points) Write a Scala program that prompts the user for lines of input, ending with
a line “quit”, and prints the lines in reverse order. (Yes, you can do this with a recursive
function! You do not need arrays or lists.) Sample execution (text in boldface is what you
type; text in typewriter font is what the program prints):

[bmassing@xena02]$ scala reverse.scala

enter lines of text, quit to end

hello world

more text

still more

another line

quit

here are the lines you entered, in reverse order:

another line

still more

more text

hello world

You can use the library function readLine to read a line of text; for example, the statement

val s = readLine

makes s a String that contains a line of text typed by the user.

2


