
CSCI 1320 September 2, 2014

Slide 1

Administrivia

• Notice that reading assignments include links to video lectures made by the

textbook author (member of the department and a Trinity alum). Not required

but may be useful.

• Homework 1 on Web; due next Tuesday. (Should be fairly easy — practice

with tool(s).)

• A request: You will turn in most if not all work for this course by e-mail. Please

include the name or number of the course in the subject line of your message,

plus something about which assignment it is, to help me get it into the correct

folder for grading.

Slide 2

More Administrivia

• If you’re a prospective major/minor, or if you just want to know about

departmental events, consider signing up for our CSMajors mailing list:

Go to the department’s Web page at http://www.cs.trinity.edu

and follow the link that says “Subscribe . . . ”. You will get a “please confirm”

e-mail. Reply to it. That generates a request to the moderator (me). Once I

approve it, you’re in.

http://www.cs.trinity.edu


CSCI 1320 September 2, 2014

Slide 3

Steps in Solving Problems on a Computer

• Understand the problem — what do you want the computer to do, exactly?

• Design a solution suitable for a computer (“develop an algorithm”).

• Implement the solution (“write the program”). This requires expressing your

ideas in “a programming language” — of which there are many! Programming

languages are similar to human languages in some ways, different in others;

they are meant to be (somewhat!) human-readable while still being precise

enough for a computer to understand.

• Test your solution. This will involve the use of some tool that translates what

you write (“source code”) into something the computer hardware can work

with.

Slide 4

Solving Problems on a Computer, Continued

• The overall process — understand the problem, develop and test a solution —

is mostly independent of the choice of programming language and platform

(combination of hardware and operating system, roughly). So once you

understand the principles it is relatively easy to learn new languages.

• Opinions about which language to learn first, and on what platform, vary. For

this course we will use Scala; it is somewhat easier for beginners than some

of the other choices and also powerful enough to write interesting programs.

We will also do most work from the command line under Linux.



CSCI 1320 September 2, 2014

Slide 5

Programming Basics

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Obviously that was tedious and error-prone. A very early bright idea — write

something more human-readable (source code) and have the computer

translate it. Useful even if the source code is just a human-readable version of

the primitive operations (assembler language). Even better if the source code

is less primitive (high-level language).

• Source code is simply plain text (as opposed to text plus formatting, as in a

word-processor document). Since the hardware doesn’t understand it,

however, . . .

Slide 6

Programming Basics, Continued

• Source code can be interpreted — translated line by line into something the

hardware can understand, by another program called an interpreter.

(This is how “scripting languages” work. An example is the command shell’s

language. !)

• Or it can be compiled — translated by a program called a compiler into

something the hardware can execute directly.

(This is how traditional “high-level” languages such as C and Fortran work.)

• Or it can be compiled into some intermediate form that can be executed by

another program.

(This is how some recent languages such as Java work.)



CSCI 1320 September 2, 2014

Slide 7

Writing Source Code

• How do you get source code? If using an interpreter, you can just type it in. If

you want something you can keep and reuse, however, you need a tool that

will do that.

• Simplest way to create source code is with a text editor — a program for

writing and editing plain text. This is what we will do for now.

• (Another way is to use an IDE (Interactive Development Environment). We

will try one of these later in the semester.)

Slide 8

A Word About Tools

• In this class we use Linux and command-line tools because we believe it is

important for budding computer scientists to know how to work with these

tools.

For others — exposure to something new and different?

• (What is Linux? it’s an operating system, as Windows and Mac OS X are

operating systems. It’s one of a family of operating systems descended from

UNIX, developed at Bell Labs in the early 1970s. A lot of servers run Linux or

some other UNIX-like system. There are also ongoing efforts to develop

mainstream desktop systems.)

• A UNIX person’s response to claims that UNIX isn’t user-friendly: “Sure it is.

It’s just choosy about its friends.”



CSCI 1320 September 2, 2014

Slide 9

Getting Started with Linux

• When you log in, you should get a graphical desktop, which should be

navigable with what you know from using other graphical environments

(though some details are different).

• In Linux, we talk about files and directories; the idea is the same as Windows’

files and folders, though again some details are different.

• The graphical system should give you a way to get a terminal window. Once

you have that . . .

Slide 10

Getting Started With the Command Line

• What you get when you start a terminal window is a “command shell”, similar

to Windows’ “MS-DOS prompt”.

Rather than pointing and clicking, you type the name of the program you want

to run, plus whatever arguments (parameters) it needs.

• (Why would you want to use a command line? because for some things it’s

arguably more efficient, and it’s “scriptable” in ways that GUIs typically aren’t.)

• Let’s try some commands . . . (Don’t worry if this goes by quickly — you should

plan anyway to spend some time outside class trying out what we do in class

and what’s in the reading.)



CSCI 1320 September 2, 2014

Slide 11

Some Commands

• pwd shows the current directory. (When you give a filename, it’s relative to

this directory unless you give a full pathname.)

• ls lists the current directory. Add -l to get more information.

• cd foo changes to directory foo. Just cd goes back to your home

directory. Try cd Local and then ls.

• mkdir foo creates a director foo. Might be useful to create one for your

files for this class.

• passwd changes your password. (Not a command you’ll want often, but

probably now!)

Slide 12

Useful Command-Line Tips

• The shell (the application that’s processing what you type) keeps a history of

commands you’ve recently typed. Up and down arrows let you cycle through

this history and reuse commands.

(Pedantic aside: “The shell” here means the one you’re most likely to be

using. There are other programs with similar functionality you could use

instead.)

• The shell offers “tab completion” for filenames — if you type part of a filename

and press the tab key, it will try to complete it.

• To learn more about command foo, type man foo. This is reference

information rather than a tutorial, but usually very complete. man -k foo

will give you a list of commands having something to do with foo.



CSCI 1320 September 2, 2014

Slide 13

Remote Access

• One of the strengths of a command-line enviroment is that it works well for

“remote access” (using the computer when you aren’t sitting in front of it).

• To do this from another UNIX-like computer, use ssh. scp and sftp can

be used to copy files.

• From a Windows computer, install either Cygwin (UNIX-like toolkit) or PuTTY

(terminal emulator).

• More details in chapter 2 of book, or ask me.

Slide 14

Text Editors

• Many, many text editors, and people have favorites. Notepad is an example

from the Windows world.

• I use and will teach in this class vi: It’s found on every UNIX/Linux system I

know of, and is very powerful, though it takes some getting used to. (vi on

our Linux machines is actually vim, a more featureful “clone” of the original

vi.)

• Other popular Linux text editors include emacs, pico, and gedit.

Advice: Give vi a real try first, but if using it is just too painful, use something

else!



CSCI 1320 September 2, 2014

Slide 15

vi Basics

• vi has two modes — insert mode (where what you type goes into the file)

and command mode (where you can type commands to copy, move, delete,

save, etc.).

• You start an editing session by typing, e.g., vi hello.txt. It starts in

command mode. Enter insert mode by typing i. Exit by pressing ESC. Move

around with the arrow keys. (Try entering some text.) Delete a single

character with x (in command mode).

• Save and exit by typing :wq.

• Highly recommended: vimtutor brings up an interactive tutorial.

(Homework 1 asks you to try it.)

Slide 16

vi Tips

• Biggest hurdle may be the notion of modes. (But you already know about this,

sort of? Word processors have insert/overwrite modes.)

• Cut/copy/paste basics:

dd cuts a whole line. yy copies a whole line.

p pastes after the current line. P pastes before the current line.

• Search by typing , text to search for, Enter. Repeat search with n.

Search-and-replace using this, cw, and . (See book.)



CSCI 1320 September 2, 2014

Slide 17

vi Tips — Errors/Mistakes

• u means “undo” the previous action (insertion, deletion, paste). Repeat to

undo multiple actions.

• :q! exits without saving. Useful if you make a complete mess of things.

Slide 18

More Commands

• Now that we have a way of creating files, we can try out some other basic

commands.

• cat to show contents of a file. more or less to show it a screenful at a

time.

• cp to copy one file to another. -i to warn about overwrites.

• mv to move or rename a file. -i to warn about overwrites.

• rm to delete a file. (Note — no recycle bin, so use with caution! or -i to

prompt.)

• Other useful/interesting commands in chapter 2. Good to go through the list

and try them out for yourself.



CSCI 1320 September 2, 2014

Slide 19

UNIX Filesystem Basics

• Unlike in Windows (and Mac?), UNIX filesystems are case-sensitive (so hello

and Hello are different files).

• Files have two levels of ownership — “owner” (user) and “group”. Groups

allow sharing files with some but not all users.

• File access is controlled by “permissions”. Three levels (owner, group, and

everyone else), three types of access (read, write, execute).

• ls -l shows permissions. chmod changes them.

Slide 20

Minute Essay

• (None — sign in.)


