
CSCI 1320 September 4, 2014

Slide 1

Administrivia

• Reminder: Homework 1 due Tuesday (at 11:59pm).

• Options for doing homework include using our classrooms/labs, using our

machines remotely, using your own system. More by e-mail.

Slide 2

Review — Programming Basics, Tools

• (Review slides on this topic from last time.)

• Review of commmand-line tools on next slides. Sometimes people comment

“lots of commands to learn” or “lecture moved pretty fast”. Yes.

Practice/experiment outside class will help. True for many (most?) things we

do in this course. If you have trouble remembering all the commands (which

you might at first!): In times past beginners got paper “cheat sheets” of

commonly-used commands. Maybe make yourself an electronic equivalent?



CSCI 1320 September 4, 2014

Slide 3

Command Line Recap

• Last time we looked (briefly!) at commands for navigating the file system and

working with files (moving, copying, etc.). (Review on next slide.) Other

useful/interesting commands in chapter 2. Good to go through the list and try

them out for yourself.

(Yes, if you’re sitting in front of the machine you can use the GUI. If you’re

logged in from somewhere else, the command line may work better.)

• Remember/note that man shows you information about a command, and

man -k shows you a list of commands related to a keyword.

Slide 4

Commands For Navigating the Filesystem

• Unlike GUIs (at least sometimes!), shell programs (mostly?) have a notion of

“current/working directory”. pwd shows what it is. cd changes it.

• mkdir to create a new directory. rmdir to delete one (must be empty).



CSCI 1320 September 4, 2014

Slide 5

Commands For Working With Files

• Now that we have a way of creating files, we can try out some other basic

commands.

• cat to show contents of a file. more or less to show it a screenful at a

time.

• cp to copy one file to another. -i to warn about overwrites.

• mv to move or rename a file. -i to warn about overwrites.

• rm to delete a file. (Note — no recycle bin, so use with caution! or -i to

prompt.)

Slide 6

vi Tips — Review

• Cut/copy/paste basics:

dd cuts a whole line. yy copies a whole line.

p pastes after the current line. P pastes before the current line.

• Search by typing , text to search for, Enter. Repeat search with n.

Search-and-replace using this, cw, and . (See book.)

• :help brings up online help. :q to exit.

• For the record — vi on our systems is actually vim (“vi improved”), much

more featureful than “real” vi. :help visual-mode describes one

feature you may like.



CSCI 1320 September 4, 2014

Slide 7

More vi Tips — Review

• u means “undo” the previous action (insertion, deletion, paste). Repeat to

undo multiple actions. control-r to “redo”.

• :q! exits without saving. Useful if you make a complete mess of things.

Slide 8

vi Tips — Errors/Mistakes

• If you type just q rather than :q, vi thinks you want to record a macro.

Screen will show “recording”. Press q to make it stop.

• If you type q: rather than :q, vi thinks you want it to display a history of

commands and shows them to you in a subwindow. Type :q to make that go

away.



CSCI 1320 September 4, 2014

Slide 9

vi Tips — Errors/Mistakes, Continued

• If you just close the terminal window when running vi, that “crashes” vi. So

what? Well . . .

• vi creates a hidden file that saves information that can help with recovery if it

crashes. Deleted on normal exit, otherwise not. And then next time you start

vi on that file — screenful of messages starting ”ATTENTION” and ”Found a

swap file” and finally asking you whether you want to open it anyway or what.

If you respond R vi will try to recover unsaved changes; otherwise not. To

actually delete this hidden file, so you don’t get that same screenful of

messages next time, respond D.

Slide 10

UNIX Filesystem Basics

• Unlike in Windows (and Mac, sometimes), UNIX filesystems are

case-sensitive (so hello and Hello are different files).

• Files have two levels of ownership — “owner” (user) and “group”. Groups

allow sharing files with some but not all users.

• File access is controlled by “permissions”. Three levels (owner, group, and

everyone else), three types of access (read, write, execute).

• ls -l shows permissions. chmod changes them.



CSCI 1320 September 4, 2014

Slide 11

Scala

• Scala is short for “scalable programming language”. (We may talk more later

about what that means.) Relatively new language, but we think good for a first

course.

• Various options for running Scala source code. Today we will look at two of

them — typing it in interactively, and executing “scripts”.

scala starts an interactive environment (“REPL” – “read, evaluate, print”

loop), good for trying things out.

scala program.scala runs the program in file program.scala.

• By tradition (established by the inventors of the C language, in

1970-something), our first program will just write to the screen “hello, world”).

Slide 12

A First Scala Program

• Type scala at the command line to start the interpreter.

Now type

println("hello, world")

(and press return).

Try misspellings and other variations. Type :quit to end.

• Or we could put that single line in a file hello.scala and run it with the

command

scala hello.scala



CSCI 1320 September 4, 2014

Slide 13

Comparison — Python

• An equivalent program in Python (another popular language for beginners,

used in our CC-oriented first course CSCI 1311):

print "hello, world"

• Run interactively or as script using command python.

Slide 14

Comparison — C

• An equivalent program in C (the language previously used in this course):

#include <stdio.h>

int main(void) {

printf("hello, world\n");

return 0;

}

• No option for running interactively; first compile (command gcc) to create

executable file, then “run” the file.



CSCI 1320 September 4, 2014

Slide 15

Comparison — Java

• An equivalent program in Java (a language often used as a first language in

high-school courses):

public class Hello {

public static void main(String[] args) {

System.out.println("hello, world");

}

}

• No option for running interactively; first compile (command javac) to create

Java bytecode, then run bytecode using command java.

Slide 16

Programming in Scala

• In Scala (as in many, maybe most, programming languages) two of the basic

building blocks are expressions (similar to expressions in math) and

statements (roughly speaking, complete instructions).

• Before attempting definitions, try a few things . . .

• Start up the Scala interpreter and try typing in a few arithmetic expressions.

• Try making the “hello world” program print a second line.



CSCI 1320 September 4, 2014

Slide 17

Programming-Language Terminology

• token: set of characters that means something in the language, often

separated by whitespace.

• literal : token representing a value (e.g., 1).

• statement : set of tokens that give a complete action.

• expression: set of tokens that together give a value (e.g., 1 + 1).

• type: set of values together with operations on them (e.g., integer, (text)

string). Every value has a type.

Slide 18

Numeric Literals and Expressions

• Numeric literals and expressions should be fairly familiar. Notice that Scala

(like many programming languages) makes a distinction between integers

and numbers that have (or might have) a fractional part.

• Use the interpreter’s REPL to try out things. Some things may be surprising

— integer division, large numbers, calculations using fractions. To understand

some of these it helps to know how the computer represents numbers.



CSCI 1320 September 4, 2014

Slide 19

Binary Numbers

• We humans usually use the decimal (base 10) number system, but other

(positive integer) bases work too. (Well, maybe not base 1.) Binary (base 2) is

more widely used in computers because it makes the hardware simpler.

• In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (bits), with values 0 and 1.

• In base 10, 1010 means what? What about in base 2?

• (To be continued.)

Slide 20

Minute Essay

• Anything today that was particularly unclear?


