
CSCI 1320 September 11, 2014

Slide 1

Administrivia

• (Review minute essay from last time.) Notice that when there’s an answer it

will be in the not-preliminary version of the slides/notes online.

• I say in the syllabus that I try to respond promptly to e-mail. Exceptions are

minute essays and homeworks, which I don’t always look at right away. If you

need a quick reply, make that apparent on the subject line please!

Slide 2

More Administrivia

• Homework 2 to be on the Web soon. I will send mail. Due in a week.

Homework 1 grades/comments to be sent by e-mail.

• If you need help with homework — and you may! — you can ask me (office

hours or e-mail), or the ACM student chapter will probably be offering peer

tutoring.



CSCI 1320 September 11, 2014

Slide 3

Scala and Representing Data — Review/Recap

• All data in Scala (and many/most other programming languages) has a “type”

(that among other things defines a set of possible values and operations on

those values).

• Numeric types include Int, Long, Float, Double. Operations include

familiar(?) arithmetic operators.

• Text types include Char, String. Operations on String include +

defined to mean string concatenation.

Slide 4

Variables

• We know enough — more than enough — at this point to use the Scala REPL

as a calculator. But that’s not really programming, since if we want to do the

same calculation for different sets of values we’d have to retype everything.

• To do almost anything interesting, we need some way to save values and give

them names, so we can reference them again. So Scala, like most

programming languages, has a notion of variables, similar (but not identical!)

to variables in math. (The biggest difference is that some Scala variables can

take on different values as a calculation proceeds.)

• Basic syntax for defining variables requires a keyword (val or var), a type,

a name, and a value. Can omit type if Scala can guess. val versus var?

Former can’t change value, latter can (with assignment statement, almost

identical to definition but without var). Value is expressed as an expression,

which can mention other previously-defined variables and which at runtime is

evaluated to give a value.



CSCI 1320 September 11, 2014

Slide 5

Getting Input

• We need one more thing in order to write real (if very small!) programs — a

way to get input from the human user of the program.

• In Scala, one way is to use library functions readInt, readDouble,

etc., (readLine for strings), e.g.

val input = readInt

(Caveat: In newest version of Scala — installed on some machines — this

gives a warning about deprecated function. Use import io.StdIn.

to avoid.)

Notice what happens if you type in something other than a number. (No, it’s

not very pretty, but for now it will do, and we will talk later about alternatives.)

Slide 6

What We Know How To Do — Review

• Write expressions including numeric and character-data literals.

• Define variables and give them values.

• “Print” things (display them on standard output, in techiespeak). (How do we

print values of variables?)

• Get input from standard input (“the keyboard” for now) with readInt,

readDouble, readLine.



CSCI 1320 September 11, 2014

Slide 7

Example

• As a first example, write a program that “counts out change” — for a given

number of cents, says how many dollars, quarters, etc., are needed.

• First step — understand the problem. Often helpful to work through some

examples “by hand”.

• Next, figure out how to get the same result(s) by using things in your “bag of

tricks” (right now pretty limited, but will grow as you learn more).

• Programming tip: Can be helpful to try things out (e.g., ways of doing

calculation) in REPL. Collect for reuse in .scala file (“Scala program” or,

for the pedantic, “Scala script”).

Slide 8

Minute Essay

• Anything today unclear?


