
CSCI 1320 September 25, 2014

Slide 1

Administrivia

• (Notice e-mail clarifying policy about homework and deadlines.)

Slide 2

Functions in Scala — Review/Recap

• Why functions? reduce duplication, “manage complexity”, allow code reuse.

• Define functions with keyword def, name, parameters, return type, body.

Simple example:

def sum(x : Int, y : Int) : Int = x + y

• Use functions by giving name, values for parameters in parentheses.

Examples:

val x = sum(10, 20)

println("x plus 1 = " + sum(x, 1))

Notice that values for parameters can be expressions.



CSCI 1320 September 25, 2014

Slide 3

Functions, Variable Scope, and Scala

• In many programming languages, every variable has a scope — the part of

the program within which it has meaning and can be referenced.

• In Scala, the scope of a variable starts with its declaration and continues to

the end of the block. Notice that a program might have different variables with

the same names and different scopes. Simple example:

def printIt(x : Int) { println(x) }

val x = 10

printIt(20)

What prints? Why?

Slide 4

Functions — Examples

• Last time we were writing a function to find the bounding box around two

rectangles. Finish that, and add code to make a complete program. (Getting

input values is another place where we could make good use of a function.)



CSCI 1320 September 25, 2014

Slide 5

Function Literals and Higher-Order Functions

• Scala lets you define “literals” for types such as Int and String. It also

lets you define literals for functions. That may seem like a strange thing to do,

but . . .

• It also supports “higher-order functions” — functions whose parameters are

themselves functions. An example from math is function composition. We will

see uses for this in programming later. (Short contrived examples for now.)

Slide 6

Repetition and Recursion — Overview

• Having if/else allows us to do a lot of things we couldn’t do before, but there

are still things we can’t do easily, mostly involving some sort of repetition.

Simple example — adding something to the grade program that would prompt

for six quiz scores. Another example might be trying to use our bounding-box

function to find a bounding box to enclose more than two rectangles, with the

choice of how many up to the user.

• Scala provides many ways to do this. We will look at recursion first.



CSCI 1320 September 25, 2014

Slide 7

Recursion

• Basic idea of recursion is to solve a problem by defining

– “base cases” we can solve easily, and

– a way of reducing other cases to “smaller” instances of the problem

• Simple examples abound in math; a traditional first example is computing the

factorial of an integer. We can define n! as the product of the integers from 1

through n, or we can use a recursive definition:

n! =







n · (n − 1)! if n > 1

1 otherwise

This is easy to convert into code in a language that supports recursion . . .

Slide 8

Recursion, Continued

• Key ideas in recursion:

– One or more base cases that can be solved without recursion.

– A way of splitting up other cases into one or more smaller recursive calls

plus some other logic.

• Very important that recursive calls be somehow smaller, so that you

eventually reach a base case!

• More examples next time . . .



CSCI 1320 September 25, 2014

Slide 9

Minute Essay

• None — quiz.


