
CSCI 1320 October 7, 2014

Slide 1

Administrivia

• Reminder: Homework 3 due Thursday. Quiz 2 Thursday as well.

• Midterm scheduled for next Tuesday. Postpone?

Slide 2

Recursion — Review/Recap

• Key ideas in recursion:

– One or more base cases that can be solved without recursion.

– A way of splitting up other cases into one or more smaller recursive calls

plus some other logic.

• Very important that recursive calls be somehow smaller, so that you

eventually reach a base case!

• Simple examples often based on math functions defined recursively (factorial,

Fibonacci numbers).

• Simple examples — program to “count down”, program to compute sum.

• Another example — four-function calculator. (Implement in a way that

illustrates use of match, functions as objects.)



CSCI 1320 October 7, 2014

Slide 3

Sidebar: Tracing Code

• Something I sometimes ask you to do on quizzes/exams is tell me what a

program prints out (without just typing it in). To do this you need to “trace the

program”, “play computer”, etc.

• (This can be a useful skill when your programs don’t give the answers you

want.)

• To do this: Work through the program statements in the same order the

computer does, writing down values for variables.

Slide 4

Sidebar: Testing Programs

• As you’re learning, the first step in writing a working program is just coming up

with something the compiler-or-whatever can understand.

• But once you have that you may still have logic errors (even if — as you

should! — you’ve thought some about whether your approach should work),

and if your logic is okay you might have mistyped something.

• So before “shipping” it, good to test . . .

• With what inputs? Choosing good test inputs maybe has aspects of both art

(craft?) and science, but some thoughts . . .



CSCI 1320 October 7, 2014

Slide 5

Sidebar: Testing Programs, Continued

• Test with inputs that, among them, cover all the paths through your code.

• Test with “boundary values” if appropriate.

• If possible, test with inputs such that you can easily confirm that the answer is

right!

• And you may find it helpful to recall . . .

Slide 6

Arrays and Lists — Preview

• With what we’ve done so far we have enough tools to compute anything we

want to compute.

• However, some things are awkward (repetition), and we don’t yet have a

convenient way to store many values — something similar to subscripted

values in math.

• Most programming languages give you a way to represent collections. Exactly

what you get depends on the language — e.g., C gives you only something

quite primitive (but close to what the hardware can do), Java gives you

something more abstract/useful, and Scala goes even further.



CSCI 1320 October 7, 2014

Slide 7

Minute Essay

• Would you be okay with postponing the midterm until after the (short) fall

break? i.e., until October 21 (T) or October 23 (Th)?


