
CSCI 1320 October 28, 2014

Slide 1

Administrivia

• Homework 4 due date extended to Thursday.

• Next quiz Tuesday (a week from today).

Slide 2

Minute Essay From Last Lecture

• (What can you do with these methods?)

• At this point, not a lot of inspired/inspiring ideas.

• A problem right now is that we don’t seem to have a good way to get input,

other than typing it all in (yuck!). We could use input redirection (to get input

from a file), but then we have to get all input from the file.



CSCI 1320 October 28, 2014

Slide 3

Homework 4 Hints

• (Review problems.)

• (Hints as needed? continue at end of class)

Slide 4

Collection Methods — Review/Recap

• Many, many methods for operating on elements of a collection, more than we

have time to look at. Simple example is revised versions of array/list demo

programs. A few more today, more examples in textbook. Higher-order

methods may seem strange at first. Practice helps!

• Textbook also, in passing, describes “curried” functions, needed in order to

understand “fold” methods. Also not an easy topic to understand, but should

make some sense with a bit of practice. For now okay to skim, just taking note

of syntax. Also okay to skim sections on types and variable argument lists.



CSCI 1320 October 28, 2014

Slide 5

Mutability and Aliasing

• Up to now we’ve taken a fairly abstract view of what variables are and how

things are stored in the computer’s memory. Need to know a bit more in order

for some things to make sense, though.

• So . . . In Scala all variables are what in Java are known as references —

pointers to other memory areas. Some of these pointed-to things (objects)

can be changed (mutable) and some can’t (immutable).

• It’s possible for two variables to point to the same object. If the object is

mutable, things can get interesting — changes made via one variable are

reflected when you access via the other. Sometimes this is useful; sometimes

it’s a source of trouble.

Slide 6

Argument Passing — Pass-By-Value

• (Terminology: I’ll use “argument” and “parameter” interchangeably. Some

writers make a distinction between the thing in the function and the thing in

the calling program. I’ll use the terms formal and actual to make that

distinction.)

• When you call a function as we’ve done so far, Scala passes all arguments by

value, into val variables. So you can’t change the variables themselves.

However, if the object being pointed to is mutable, it can be changed. Again

— sometimes useful, sometimes a source of trouble.



CSCI 1320 October 28, 2014

Slide 7

Argument Passing — Pass-By-Name

• Scala offers an additional mechanism for argument-passing: pass-by-name.

Not so easy to get the full picture of how it works, but used in some useful

standard methods and so worth mentioning now.

• Basic idea is that rather than passing a value to the called function/method

you pass a function, and the function is called every time the argument is

referenced (rather than only once).

Slide 8

Pass-By-Name and Collection Methods

• Arrays and lists have two methods that use pass-by-name: fill and

tabulate.

• Simple examples:

val a1 = Array.fill(4)(10)

val a2 = Array.tabulate(4){i => i+1)

val a3 = Array.fill(10)(readInt)

(Notice(?) that the syntax is that of a “curried” function.)



CSCI 1320 October 28, 2014

Slide 9

Minute Essay

• None — sign in.


