CSCI 1320 November 6, 2014

Administrivia

o Reminder: Quiz 4 Tuesday. Homework 5 due.

e “ASCII art” program from Tuesday revised and added to “sample programs”

page. (How to tell what was changed? Next slide.)

e (Review primes program once more. Wikipedia article on sieve of
Slide 1 Eratosthenes gives a justification, sort of, for ending the outer loop with \/ﬁ.)

Sidebar: VI mTips

e If you put the cursor on a parenthesis or brace, Vi will highlight it and its
match, if it has one. If you press% the cursor moves to the matching brace,
again if there is one. Very helpful in diagnosing some kinds of problems!

e To show differences between two files, can use Vi mdi f f . Example:

Slide 2 vindi ff ascii-art-1.scala ascii-art-2.scala

Add - 0O flag before filenames to split horizontally.

Switch between “windows” with control-w control-w.

:help vindiff and: hel p buffers for more info.




CSCI 1320 November 6, 2014

Sidebar: Input/Output Redirection, Revisited

o Normally programs run from the command line write output to the terminal
window. Can instead “redirect” output to a file:
> outfil e (overwrite)
>> outfil e (append)

e Normally programs get input from the keyboard, but can also make them get

Slide 3 input from a file with <.

(How could this help you in checking your programs?)

e Finally, can use “pipes” (vertical-bar | ) to have output from one program
become input to another. Very powerful idea! this and some other ways of
connecting simple programs makes for a very powerful and flexible

environment.

Simple example using primes program:

echo "1000000" | scala prines.scala > prines.txt

Files — Overview

e One of the things that's useful about computers is their ability to store large
amounts of information in a form that they can process — i.e., the ability to
store and work with files.

e “File” is a pretty broad and generic term and includes everything from simple
Slide 4 text files (such as the ones that contain your Scala programs) to
word-processing documents and images and digital representations of music

and video and . ..

e Up to now, our ability to work with files has been limited to what I/O
redirection provides — which is useful, but very limited since we can only
work with one source and one destination. Most programming languages

provide something more general.




CSCI 1320 November 6, 2014

Sidebar: Packages in Scala

e Before talking about working with files in Scala, useful to know a little about

packages.

e Basic idea of packages is to provide some way to organize lots and lots of
code: Languages may include extensive libraries. Real applications typically

slide 5 involve quite a lot of code. How to organize? One way is to somehow group

related functionality. Scala (and Java) does this using packages. Idea is

similar to folders/directories for organizing files.

e Packages also provide a nice mechanism for avoiding naming collisions —
i.e., names of things (such as Li St ) don’t have to be unique across
everything in the library and your own code, only within a package.

Sidebar: Packages in Scala, Continued

e You may notice that when you type an expression into the interpreter, it tells
you its type, and sometimes the type is something simple (e.g., | nt) but
sometimes it’s less scrutable — e.g., for arange (suchas 0 t o 5)it's
scal a. col | ecti on. i mut abl e. Range. I ncl usi ve

Slide 6 The lower-case parts identify the “package” containing the library code for

ranges.

You could use this whole name as the type for a function parameter, but that's

unwieldy, so ...

e i mport gives you a way to tell the Scala compiler/interpreter where to look
for things it couldn’t otherwise find. (The above isn't the best example
because everything in scal a. col | ect i on is automatically imported.)

. J




CSCI 1320 November 6, 2014

Files in Scala

e Simplest way to read files in Scala is with scal a. i 0. Sour ce (or just
Sour ce withani nport scal a. i 0. Sour ce):

Source. fronFil e("sonefile")

e This gives you back something that the interpreter claims is an “iterator”.
Slide 7 What's that .. .

Sidebar: Iterators

e For arrays and lists you know it's sometimes useful to be able to go through
every element of the array/list and do something (print it, or add it to a running
total, e.g.). It's useful to be able to do that with other kinds of collections too,

(e.g., lines in afile).

Slide 8 e Abstract term for something that lets you “visit” each element of a collection
— iterator. As used in Scala/Java, it's something with two operations, “is there

another element?” and “give me the next element”.

o Something to know about iterators — not necessarily reusable (so must be
somehow reset or recreated if you want to go through the collection more

than once).




CSCI 1320 November 6, 2014

4 )

Files in Scala, Continued

e What you get back from f r onfi | e is an iterator over the characters of the

file, and you can apply to it lots of the methods you use on arrays and lists.

e Toread aline at atime — get Li nes, which gives you an iterator over

Strings.
Slide 9 e After using a file, good practice to “close” it (free up any resources used to
manage it).
Files in Scala, Continued

e Other ways of working with input files, and all ways of working with output
files, use the underlying Java libraries.

e Two simple ones — Scanner for input, Pri nt Wi t er for output.
Simple example:

Slide 10 inmport java.io.File

import java.io.PrintWiter

val pw = new PrintWiter(new File("out.txt"))
pw. println("hello world")

pw. cl ose

(More examples in textbook.)




CSCI 1320

Slide 11

Slide 12

November 6, 2014

e (Simple example(s).)

Examples

e None — sign in.




