
CSCI 1320 November 25, 2014

Slide 1

Administrivia

• Reminder: Homework 6 due Tuesday after holiday.

• Reminder: Quizzes 5 and 6 next week also. (Or drop Quiz 6?)

• Grades for homeworks 2 and 3 mailed.

Slide 2

Sorting and Searching — Recap/Review

• (Review slides I would have used . . . )



CSCI 1320 November 25, 2014

Slide 3

Recursion Revisited, and More Sorts

• We used recursion to repeat things earlier in the semester (before learning

about collection methods and loops). Useful, and can be elegant, but many

thing are probably as simple, or simpler, with other methods.

• However, some algorithms are much easier to express with recursion,

particularly those where a complete solution involves more than one recursive

call. (Classic example is computing elements of the Fibonacci series.)

• Two more classic — and more efficient — sorts also work this way, namely

quicksort and mergesort.

Slide 4

Quicksort — Executive-Level Summary

• The idea is to pick one element of the array as a “pivot”, rearrange the array

so that everything smaller than the pivot is to its left and everything larger is to

its right (meaning that the pivot is now in exactly the right spot), and use

recursion to sort the elements to the left and the elements to the right.

• Code sketch:
// sort nums[start .. end]

def quicksort(nums:Array[Int], start:Int, end:Int) = {

if (start < end) {

val pivot = nums[start]

val pivotIndex = partition(pivot, nums, start, end)

quicksort(nums, start, pivotIndex-1)

quicksort(nums, pivotIndex+1, end)

}

// rearrange nums[start .. end] so that:

// all elements <= pivot are to the left

// all elements > pivot are to the right

// pivot is at nums[index]

// index is returned

def partition(pivot:Int, nums:Array[Int], start:Int, end:Int) : Int = { /* .. */ }

}



CSCI 1320 November 25, 2014

Slide 5

Mergesort — Executive-Level Summary

• The idea is to split the array into two pieces of equal size (or as close as we

can get), sort the pieces using recursion, and merge the two sorted pieces.

(So this cannot be done in place.)

• Code sketch (involving more copying than is strictly needed):
// sort nums[start .. end] into numsOut[start .. end]

def mergesort(nums:Array[Int], numsOut:Array[Int], start:Int, end:Int) {

if (start < end) {

val split = (start+end)/2

mergesort(nums, numsOut, start, split)

mergesort(nums, numsOut, split+1, end)

copy(numsOut, nums, start, end)

merge(nums, numsOut, start, split, end)

}

}

// copy nums[start .. end] to numsOut[start .. end]

def copy(nums:Array[Int], numsOut:Array[Int], start, end) { /* .. */ }

// merge sorted subarrays nums[start .. split] and nums[split+1 .. end]

// to produce numsOut[start .. end]

def merge(nums:Array[Int], numsOut:Array[Int], start, end) { /* .. */ }

Slide 6

GUIs and Event-Driven Programming

• Up to now our programs have all interacted with their environment in a fairly

primitive way — getting text input from standard input and files and writing

text output to standard output and files, and interacting with the human user in

a basically synchronous way.

• Programs with GUIs, though, are typically somewhat different — the main

program (which is often hidden in library code) is often just a loop that waits

for keyboard/mouse input delivered by the program’s environment (operating

system, graphical environment, window manager, etc.).

• This leads to an “event-driven” programming model that can seem rather

different from what’s used for text-based programs. Rather than defining the

whole interaction in the way we’ve been doing, you typically write code that

defines (often in terms of library components) what appears on the screen

and how each component responds to user input.



CSCI 1320 November 25, 2014

Slide 7

GUIs in Scala

• Java (which is what’s under Scala’s hood in some sense) defines not one but

two libraries that provide functionality for building GUIS — predefined

components such as buttons and checkboxes and menus, plus

frameworks/mechanisms for laying things out and defining interaction with

users. (Why two? Historical reasons.)

• Scala gives you access to all of that if you want it, and also provides a less

verbose syntax for using some of the more-commonly-used things.

• In writing programs, often useful to think in terms of “what should the

program’s interface look like?” (appearance) and “how should the program

respond to user actions/inputs?” (behavior).

Slide 8

Examples

• (Quick look at some examples. More next time.)



CSCI 1320 November 25, 2014

Slide 9

Minute Essay

• TBA


