
CSCI 1320 December 2, 2014

Slide 1

Administrivia

• Reminder: Homework 6 due . . . Due date was today, changed to Thursday by

request.

• One more homework.

• No Quiz 6.

• Homeworks 1 through 5 graded and grades sent by e-mail. Midterms graded

and to be returned next time. (If you want to know your score right away send

me mail.)

Slide 2

GUIs and Event-Driven Programming — Recap

• Up to now our programs have all interacted with their environment in a fairly

primitive and synchronous way.

• Programs with GUIs, though, are typically somewhat different — interaction is

more complex and also asynchronous (“event-driven” programming model).

Typically significant parts of control flow are done in library code; you provide

setup code and code to respond to events (including user input).

• In writing programs, often useful to think in terms of “what should the

program’s interface look like?” (appearance) and “how should the program

respond to user actions/inputs?” (behavior).



CSCI 1320 December 2, 2014

Slide 3

GUIs in Scala — Code

• Code for building GUIs in Scala uses several things that may not make 100%

sense right now. More exposure/experience (e.g., in CS2) should help. For

now a good strategy may be to start from working example and tinker.

• In particular, libraries make use of:

– Scala/Java package naming conventions.

– Object-oriented syntax and ideas, including subtypes.

– Curried functions and pass-by-name (compare to Array.fill).

– Partial functions (compare to match).

Slide 4

GUIs in Scala — Appearance

• Scala provides many many library components programs can use as building

blocks (and also provides a way to define your own components).

• Key idea — components are grouped hierarchically using “containers”, and

Scala provides different kinds of containers that arrange components

differently (e.g., as a rectangular grid, or “flowed” as text is flowed in a

paragraph).



CSCI 1320 December 2, 2014

Slide 5

GUIs in Scala — Behavior

• For components that can interact with the user (e.g., buttons), Scala provides

different mechanisms for programs to say what should happen when the user

does something (clicks a button, presses a key, etc.).

• Key ideas: Programs respond to ‘events”. Scala models this in terms of

“publishers” (that generate events — e.g., a button generates button-pressed

events) and “reactors” (that respond to events).

• Simplest kind of interaction is that defined for buttons and menu items — one

possible kind of event, and Scala provides a simple way to specify what code

will be executed when that event happens. For other kinds of events, you

specify (based on the publishers/reactors model) what kinds of events you

want to be notified about and what you want to do when they occur.

Slide 6

Graphics in Scala — Custom Panels

• Predefined components do a lot, but what if you want something that’s not

provided? in particular, you want to control the image yourself?

• Make a custom component — in Scala, a Panel that contains code that

says what should be drawn for this component. Must also explicitly ask the

runtime system to redisplay when something changes.

• Possibilities for what to draw are, well, extensive! graphics library provides

ways to draw a lot of things, including but not limited to simple shapes and

images from files.



CSCI 1320 December 2, 2014

Slide 7

GUIs in Scala — Timers

• Last but not least, Scala provides mechanisms for specifying that something

should happen repeatedly, at timed intervals.

• This makes animations relatively straightforward.

Slide 8

Examples

• “Hello world”.

• GUI “sampler” program with buttons, menu, list.

• (More examples next time.)



CSCI 1320 December 2, 2014

Slide 9

Minute Essay

• None — quiz.


