
CSCI 1321 (Principles of Algorithm Design II), Fall 2001

Homework 21

Assigned: September 13, 2001.

Due: September 20, 2001, at 5pm.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

Contents

1 Tips of the week 1
1.1 Software design tip . 1
1.2 UNIX text editors, revisited . 1
1.3 Compilation tips . 2

2 Problem statement 2

3 Hints and tips for this assignment 3
3.1 Using the template linked list class . 3
3.2 Dealing with multiple C++ files . 4

4 What to turn in 4

1 Tips of the week

1.1 Software design tip

It is frequently easier to build programs by iteratively adding features than by first writing all code
and then beginning the process of compiling and debugging. If you test after each adding each
feature, any mistakes are likely to be in the newly added code.

1.2 UNIX text editors, revisited

If you tried vi, hated it, and went back to the Windows world, be advised that there are other
editors available on the CS Linux machines. emacs is probably the most widely available; it is very
powerful, though it also requires some learning. There are also “friendlier” GUI-oriented versions
of both vi (gvim) and emacs (xemacs). See Some Useful Links (Mostly for CS 1320/1321)2 for
links to more information.

1 c© 2001 Jeffrey D. Oldham (oldham@cs.stanford.edu) and Berna L. Massingill (bmassing@cs.trinity.edu).
All rights reserved. This document may not be redistributed in any form without the express permission of at least
one of the authors.

2http://www.cs.trinity.edu/~bmassing/Misc/class-links.html

1

CSCI 1321 Homework 2 Fall 2001

1.3 Compilation tips

Many compilers can be asked to provide warning messages (about what might be wrong with
your program) in addition to the usual error messages. These warning messages may help find
programming mistakes more easily than the default of producing only error messages.

To ask the g++ compiler to produce these messages, use the -Wall and -pedantic options, e.g.,
type g++ -Wall -pedantic hello.cpp. If you use a different compiler, find out whether it has
similar options and how to turn them on.

To ask the g++ compiler to name the resulting output something other than a.out, use the -o

option. For example, to compile hello.cpp and put the result in hello rather than a.out, type
g++ -Wall -pedantic hello.cpp -o hello.

It is a pain to type these every compilation. Instead, you can store compilation commands in a
Makefile and use the make command to compile your program, creating the executable.

For example, suppose you use the command g++ -Wall -pedantic foo.cpp -o foo to compile a
C++ file named foo.cpp and create an executable called foo. Instead, you can create a file called
Makefile containing these two lines of code:

foo:

tab g++ -Wall -pedantic foo.cpp -o foo

(tab denotes a tab character; using eight spaces will not work correctly.) To create the executable
called foo, type make foo.

You could accomplish the same thing by creating a Makefile containing the single line

CXXFLAGS -Wall -pedantic

This defines a general rule for compiling a file named whatever.cpp and putting the resulting
executable in whatever. With this Makefile, typing make foo will work as described above, as will
make hello, etc.

The make programming language can automate many tasks. If you want to learn more, read the
online GNU make documentation3, particularly the first chapter.

2 Problem statement

According to a former Stanford graduate student now teaching at Columbia University, the database
program running on the main Stanford mainframe computer had no built-in arithmetic operations.
Even though numbers such as tuition and housing charges were computed by this program, the
program had no integer or floating point number type.

Our task is to implement arithmetic on natural numbers, i.e., nonnegative integers, to use with
this program. Let’s use unary number notation. For example, the decimal number 7 would be
represented by “0000000” and 3 would be represented by “000”. Zero is represented by no digits: “”.

We can recursively define any natural number as one of the following:
3http://www.gnu.org/manual/make-3.79.1/make.html

2

CSCI 1321 Homework 2 Fall 2001

• zero

• one more than another natural number

For example, “000” is one more than one more than one more than zero. More succinctly, “000” is
add1(add1(add1(zero))).

Note this recursive definition for numbers is very similar to the recursive definition of lists.

We will assume that the database program supports lists of booleans and implement unary arith-
metic using the template linked list class discussed in class. Our database program must compute
tuition charges so it needs +, -, *, integer division /, and exponentiation ^ (to compute interest on
overdue balances). Our database program will never use subtraction to produce negative numbers,
but it needs to be able to compare numbers, i.e., >, >=, <, <=, ==, and !=. You need not define
arithmetic assignment operators such as += and -=, but your code may not use them either.

To get you started, file unary.h4 contains some starter source code for the class definition, and
file test-unary.cpp5 contains a simple main() function for preliminary testing of your code. (Of
course, you will want to write more extensive testing code.)

The starter source code includes:

• a definition of the word natural as the type for our numbers

• a definition of the number zero

• input and output functions, i.e., definitions of the << and >> operators for unary (natural)
numbers. For example, cin >> n will read a base-10 number from the standard input, storing
it into the (unary) natural number n. cout << n will print the base-10 representation of the
(unary) natural number n.

These input and output functions assume the following functions are defined:

• add1(): creates a larger number.

• sub1(): given a nonzero number, extracts its subnumber.

• iszero(): returns true if the number is zero, false otherwise.

Your mission in this assignment is to fill in the missing functions in unary.h. (Of course, you may
add other functions if you need them.)

3 Hints and tips for this assignment

3.1 Using the template linked list class

The only functions you should use from the template linked list class (Seq) are its two constructors
and member functions empty(), hd(), and tl(). You do not need to read and understand the
source code for this class; it should be possible to use the required functions by following the
example in sample program list-example.cpp6 and this short description of the class7.

4http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Homeworks/HW02/Problems/unary.h
5http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Homeworks/HW02/Problems/test-unary.cpp
6http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/list-example.cpp
7http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Notes/jdo-lists/

3

CSCI 1321 Homework 2 Fall 2001

3.2 Dealing with multiple C++ files

Fitting all the source code for complicated programs into one file would be unrealistic, so C++
supports storing code in multiple files. Historically, files ending with “.cpp” stored definitions,
e.g., function definitions, while files ending with “.h” stored the corresponding declarations. Un-
fortunately, recent C++ changes have blurred these distinctions, so sometimes we put function
definitions in header files, as in unary.h.

For this assignment, I recommend the following:

• Make sure that the files seq.cpp8, seq.h9, unary.h10, and test-unary.cpp11 are in the same
directory.

• Do not change the given #include header directives, but feel free to add to them as necessary.

• Compile using the command g++ -Wall -pedantic test-unary.cpp. This will produce an
executable named a.out. You can use the -o output-file-name g++ option if you desire.

Note that the code, as distributed, should compile, albeit with numerous warnings. Also, it will
not run until code for the necessary functions is written.

If you are using a compiler other than g++, it is your responsibility to determine how to deal with
multiple files.

4 What to turn in

Submit your source code as described in the Guidelines for Programming Assignments12. For this
assignment, use a subject header of “cs1321 hw2”, and submit a single file containing your revised
version of unary.h. You do not need to send seq.h, seq.cpp, or test-unary.cpp; I will provide
these files when I test your code.

8http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/seq.cpp
9http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/seq.h

10http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Homeworks/HW02/Problems/unary.h
11http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Homeworks/HW02/Problems/test-unary.cpp
12http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Notes/pgmguidelines/index.html

4

