
CSCI 1321 (Principles of Algorithm Design II), Fall 2001

Homework 51

Assigned: October 25, 2001.

Due: November 6, 2001, at 5pm.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

Contents

1 Problem statement 1
1.1 Introduction . 2
1.2 What the class must provide . 2
1.3 Implementation . 3
1.4 Naive implementation strategy . 3
1.5 Powers-of-two implementation strategy . 3
1.6 Timing comparisons . 4

2 Checking for memory leaks 4

3 What files do I need? 5

4 What to turn in 6
4.1 Source code . 6
4.2 Experimental evidence (graphs) . 6

1 Problem statement

You are to implement a dynamic array class using arrays and dynamic memory using two different
strategies. The classes will differ in their strategies for when to resize arrays. You are then to show
that one implementation runs asymptotically faster than the other.

As always, please read through the entire assignment before beginning to code; timing your
code might be easier if you read through that section first.

1 c© 2001 Jeffrey D. Oldham (oldham@cs.stanford.edu) and Berna L. Massingill (bmassing@cs.trinity.edu).
All rights reserved. This document may not be redistributed in any form without the express permission of at least
one of the authors.

1

CSCI 1321 Homework 5 Fall 2001

1.1 Introduction

A dynamic array is an array that grows and shrinks as more or less storage is needed. For example,
the STL vector class2 supports dynamic array operations. As more elements are added to a vector,
e.g., using push back(), it increases in size. If elements are removed, e.g., using pop back(), it
decreases in size. Thus, users can avoid the requirement of specifying an ordinary array’s maximum
size at creation time.

In this homework, we will implement a dynamic-array class, i.e., a primitive substitute for the
STL vector class.

1.2 What the class must provide

dynamicArray objects should support the operations listed in the following table.

Function prototype Example use Explanation

dynamicArray(void) dynamicArray v; Creates an object with no
items.

length pos dynamicArray::length pos

i = v.size();

Type specifying array’s length
or a position within array.

item type dynamicArray::item type i

= v.pop back();

Type specifying an array ele-
ment.

void push back(const

item type & item)

v.push back(17); Appends the given item to the
end of the array.

item type pop back(void) int i = v.pop back(); Removes the last element of
the array and returns it.

length pos size(void) dynamicArray::length pos

i = v.size();

Returns the number of items
in array.

item type get(const

length pos i)

int i = v.get(0); Returns the item stored at the
specified position.

void set(const length pos

i, const item type &

item)

v.set(0,3); Stores the second parameter in
the position specified by the
first parameter.

If in doubt about a function’s semantics, read about the corresponding function in the STL vector

class3. push back() increases the number of items stored in the dynamicArray object, while
pop back() decreases the number of items. Using pop back() on an array with no elements is
undefined; you choose whether to check for this case or not. (This might be a good place to use
assert().) Similarly, get() and set() can optionally check for acceptable position values (i.e., not
bigger than the array’s size). Define a copy constructor, an assignment operator, and a destructor
if necessary. (Hint: They are necessary.)

Assume the dynamic array stores ints, but notice how easy it will be to change to a different type
by changing the definition of item type. Positions are numbered just as for ordinary arrays and
STL vectors: The “leftmost” element is numbered 0 and the “rightmost” element has number n−1,
where n is the number of items in the array.

2http://www.sgi.com/tech/stl/Vector.html
3http://www.sgi.com/tech/stl/Vector.html

2

CSCI 1321 Homework 5 Fall 2001

1.3 Implementation

Your mission in this assignment is to define a class dynamicArray that provides the functions and
types described in the preceding section. You are to implement the class using new, delete, and
arrays, not using vectors or other library classes. You may, however, use the simple array class
presented in lecture (dArray.h4) as a starting point.

The next sections discuss two possible implementation strategies. The first is somewhat less
trouble to implement; the second is more efficient. You are to implement the class twice, once
for each strategy, and compare their performance, as discussed later. Notice that you will need to
be a little careful about maintaining two copies of your class definition, since the test and timing
programs assume your class is defined in a file called dynamicArray.h. A reasonable approach is
to keep each implementation in a separate subdirectory.

1.4 Naive implementation strategy

Our naive implementation strategy for the dynamicArray class is that each object should store its
n items in a dynamically-allocated array of size n. For example, an object holding 17 items will
store them in a dynamically-allocated array of size 17. (Dynamic memory is sometimes called the
heap or colloquially “the bit bucket.”) To add one item to the end of the array, an array of size n+1
is allocated, the existing n items are copied to the new array, and the old array is returned to the
bit bucket. The procedure to remove one item from the end of the array is similar. dynamicArray
objects only support adding and removing elements from the “right” end of the array (not from
the left end or middle).

1.5 Powers-of-two implementation strategy

The naive implementation allocates an array exactly the same size as the number of elements to
hold. Thus, every time an element is added or removed, an entirely new array is allocated. If we
permit an array to have a size different from its number of elements, we can do better using the
“double or halve” heuristic, a common computer science rule of thumb:

When allocating a new array, either double or halve its size.

Initially, the array should have size one even though it has no elements. Whenever adding an
additional element requires reallocating the array, double the array’s size. Whenever an array
becomes less than one-quarter full, halve its size. Thus, the array’s size will always be a power of
two. For example, consider the following sequence of operations:

Operation Number of elements Array size Comments

dynamicArray v; 0 1 makes a new array
v.push back(3); 1 1
v.push back(4); 2 2 makes a new array
v.push back(5); 3 4 makes a new array
v.push back(1); 4 4
int i = v.pop back(); 3 4
int i = v.pop back(); 2 4
int i = v.pop back(); 1 4
int i = v.pop back(); 0 2 makes a new array

4http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/dArray.h

3

CSCI 1321 Homework 5 Fall 2001

Note that the size() member function should continue to return the number of elements actually
stored in the array, which may be different for this strategy from the array’s physical size.

1.6 Timing comparisons

A theoretically-minded friend claims that the powers-of-2 implementation runs asymptotically
faster than the naive implementation, and in fact makes an even more precise claim:

Consider a sequence of n push back() operations. The naive implementation requires
n reallocations and copying of n(n − 1)/2 elements. The powers-of-2 implementation
requires log2n reallocations and a maximum of 2n element copies.

Experimentally prove this claim: Instrument your classes to count the number of array reallocations
and associated element copies. A reallocation is the process of allocating a new array, copying
the existing array’s elements to the new array, and destroying the old array. If you write your
code in a modular form, this should occur in only one function. Also add a member function
show op counts() to both dynamicArray implementations that, given an ostream and a string
representing the array’s name, prints the array’s statistics (number of reallocations and element
copies).

Run the timing program time-dynamicArray.cpp5 using your implementation(s). This pro-
gram allows you to measure running time and the numbers of reallocations and copies required for a
specified number of push back() operations, say n. Use it collect this information for several values
of n (enough to see how running time, etc., changes as n increases); plot the results in the form of
three separate graphs, one each for running time, number of reallocations, and number of copies.
The running-time graph should plot running time (the y axis) versus number of push back() op-
erations (the x axis); the other two graphs should be similar. You may do this by hand or using
any program that provides appropriate functionality. (I use gnuplot.) It might be interesting to
try using a number of push back()s comparable to 16000, 32000, . . . , 128000.

2 Checking for memory leaks

In lecture, we emphasized the importance of returning all allocated memory to the bit bucket when
finished. There are commercial tools available for this purpose, but some are quite expensive. A
free, if primitive, alternative is a tool called mtrace. You can use this tool by following these steps:

1. Compile the program to be checked for memory leaks (test-dynamicArray.cpp6, for exam-
ple). Suppose the executable is named a.out.

2. Before running the executable, type

declare -x MALLOC TRACE=foo.txt

(You can replace foo.txt with any filename you like.)

3. Run the executable as you usually do. Memory allocation and deallocation information is
stored in the file foo.txt (or whatever filename you chose in the step above).

4. To print memory leak information, type

5http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW05/Problems/time-dynamicArray.cpp
6http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW05/Problems/test-dynamicArray.cpp

4

CSCI 1321 Homework 5 Fall 2001

mtrace a.out $MALLOC TRACE

(If your executable is not called a.out, replace a.out in the above command with the name
of your executable.)

For more information, see the info pages. (“info pages”, like “man pages”, are a standard form
of Unix/Linux documentation.) You can access the relevant pages by first typing info (to start a
text-based program to browse info pages) and then typing m libc, m memory allocation, and m

allocation debugging.

Some caveats:

1. Ignore any leak information not involving the words “new” or “delete.” For example, ignore
any leaks involving the words “exit.”

2. Ignore the indicated line numbers. Just check your code for news without corresponding
deletes and vice versa.

3. Using STL strings may cause memory leak errors; the algorithm the STL string class
uses to allocate memory does not clean up after itself properly. Thus, for show op counts, I
recommend using a C-style string (array of characters) rather than an STL string.

Please consider testing your program for memory leaks. If mtrace indicates memory leaks, I will
hand-inspect your program for memory leaks and deduct points if I find any.

3 What files do I need?

There are two provided files:

• test-dynamicArray.cpp7 partially tests a dynamicArray class. You may want to write addi-
tional tests. This code assumes your dynamicArray class is in a file called dynamicArray.h.

• time-dynamicArray.cpp8 exercises a dynamicArray implementation. This may be helpful in
proving the claim about numbers of operations. This code assumes your dynamicArray class
is in a file called dynamicArray.h.

You may also find the following sample programs useful:

• The class for dynamically-allocated arrays presented in lecture. File dArray.h9 contains the
class definition, and file dArray-use.cpp10 shows simple examples of its use.

• The version of the “print in two columns” program that uses a dynamically-allocated array
that is expanded as needed, column-print-3.cpp11.

7http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW05/Problems/test-dynamicArray.cpp
8http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW05/Problems/time-dynamicArray.cpp
9http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/dArray.h

10http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/dArray-use.cpp
11http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/SamplePrograms/column-print-3.cpp

5

CSCI 1321 Homework 5 Fall 2001

4 What to turn in

4.1 Source code

Submit your implementation(s) in files named naive-dynamicArray.h and powers-dynamicArray.h.
You do not need to submit a main program; I will test your code using my own main() function.
Submit this source code as described in the Guidelines for Programming Assignments12. For this
assignment use a subject line of “cs1321 hw 5”.

4.2 Experimental evidence (graphs)

It is probably easiest if you submit your graphs on paper, either in class or by dropping them off in
my mailbox in the department office. You may also submit them electronically (i.e., via e-mail, as
you do source code) if you choose a format I can read. Formats I know I can read are PostScript,
PDF, GIF, and Microsoft Word (the last with some hassle). If you want to submit graphs in some
other format, check with me first to make sure I will be able to read it.

12http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/Notes/pgmguidelines/index.html

6

