CSCI 1321 (Principles of Algorithm Design II), Fall 2001

Homework 7^{1}

Assigned: November 20, 2001.
Due: November 29, 2001, at 5pm.
Credit: 40 points.
Note: The HTML version of this document may contain hyperlinks. In this version, hyperlinks are represented by showing both the link text, formatted like this, and the full URL as a footnote.

Contents

1 Reading 1
2 Overview 2
3 Stacks 2
3.1 Introduction 2
3.2 Stack implementation 2
3.3 Stack implementation tips 3
4 Boolean expressions 3
4.1 Boolean expressions and reverse Polish notation 3
4.2 Well-formed expressions 4
4.3 Truth tables 4
4.4 Determining a Boolean expression's value 5
4.5 Programming an evaluator 5
5 What files do I need? 6
6 What to turn in 6
7 Hints, tips, etc. 7
7.1 Program debugging 7

1 Reading

The textbook's chapter 6 covers defining templatized classes. Chapter 7 discusses stacks. Be sure to read Section 7.4, concentrating on reverse Polish notation expressions.

[^0]
2 Overview

You are to implement a stack data structure capable of holding any element type. Then you are to write code using the stack to evaluate a Boolean expression written in reverse Polish notation.

3 Stacks

3.1 Introduction

A stack is a last-in/first-out data structure with objects arranged in linear order. That is, it permits easy access only from one end. Entries can be added or removed only at the rightmost end. For example, the STL stack class ${ }^{2}$ class implements a stack.

Your implementation should support the operations listed in the following table. These operations are similar but not identical to those provided by the STL stack class.

Function prototype	Example use	Explanation
item_type	item_type x;	type of items on stack.
size_type	size_type n ;	type for size of stack (number of elements).
stack<T> (void)	stack<int> s;	creates a stack of elements with type T but no items.
bool empty(void) const;	bool b = s.empty();	returns true if stack has no elements, false otherwise.
size_type size(void) const;	$\begin{aligned} & \text { stack<int>::size_type sz } \\ & =\text { s.size(); } \end{aligned}$	returns number of elements currently in stack.
void push(const item_type \& x);	s.push(x) ;	adds x to stack.
void pop(void);	s.pop();	pops (removes) top element of stack. Nothing is returned. It is the user's responsibility to ensure the stack is not empty before calling this function.
item_type top(void) const;	int $\mathrm{x}=\mathrm{s} . \mathrm{top}() ;$	returns top element of stack without changing the stack. It is the user's responsibility to ensure the stack is not empty before calling this function.

3.2 Stack implementation

You can choose any implementation strategy you like for your stack class except that you may not use the STL stack class. It should be possible to use your templatized class to create and manipulate stacks of ints, doubles, strings, bools, etc., with any number of elements. Your implementation should correctly use dynamic memory (i.e., deep rather than shallow copies, no memory leaks, etc.). Observe, however, that you may be able to achieve this goal with very little effort, if you implement your class using a class that already uses dynamic memory correctly (as we did when we defined a double-ended queue class deque. h^{3} using our doubly-linked-list (dll)

[^1]class). You may similarly use any class we have defined in lecture, or any STL class (except for stack).

3.3 Stack implementation tips

- You may want to begin by implementing a stack with a typedef statement declaring the type of its elements:

```
typedef string item_type;
```

Then templatize the class and test using a different type. Using a different type will check that all occurrences of item_type were actually found.

- The typename $\mathrm{C}++$ keyword provides alternative syntax for defining templates. In the textbook, template parameters are declared using syntax such as <class T>. An alternative syntax is <typename T >.
The typename keyword is also useful whenever the compiler cannot determine that an expression is a type, as in the following example:

```
typedef typename stack<T>::size_type foo;
```

Exactly when and why this is necessary is apparently only obvious to people who have compilers inside their heads. Heuristic: If the compiler becomes terribly confused about a type, and the type contains a template parameter, try adding the keyword typename before the expression.

4 Boolean expressions

4.1 Boolean expressions and reverse Polish notation

A Boolean expression consists of constants true and false connected together by Boolean operators $\& \&,| |,=>$, , and ==, and possibly parentheses. For example,
(true \&\& false) || (! true \&\& ! false)
and
! false || true
are Boolean expressions. Using infix notation, where the Boolean operators appear between their operands, can require using parentheses. Instead, we will use reverse Polish notation. Using this notation, the previous expressions are written as
true false \&\& true ! false ! \&\& ||
and
false ! true ||
Reverse Polish notation first lists the two operands (using reverse Polish notation, if they are expressions) and then the operator. For example: In the second example, the first operand is ! false, the operator is \| , and the second operand is true. The reverse Polish notation for the first operand is false !. Listing the two operands and then the operator yields the expression.

4.2 Well-formed expressions

Intuitively, a well-formed expression has the correct number of operands and operators arranged in the correct order. It is defined recursively:

A well-formed expression is either true, false, or an expression $p q \& \&, p q \|, p q=>$, $p q==$, or $p!$, where p and q are well-formed expressions.

4.3 Truth tables

To evaluate Boolean expressions, we need to be able to evaluate the simplest Boolean expressions, as follows.

- $o_{1} o_{2} \& \&$ is true if and only if both o_{1} and o_{2} are true.
- $o_{1} o_{2} \|$ is false if and only if both o_{1} and o_{2} are false.
- o_{1} ! is the opposite of o_{1} (true if o_{1} is false, false if o_{1} is true).
- $o_{1} o_{2}=>$ reads as "if o_{1}, then o_{2}." It is true if o_{1} is false or o_{2} is true. It is false if and only if o_{1} is true and o_{2} is false.
- $o_{1} o_{2}==$ is true if o_{1} and o_{2} have the same truth value.

We could also express these rules in the form of truth tables as follows:

$\& \&$	true	false
true	true	false
false	false	false
I\|	true	false
true	true	true
false	true	false

$!$	
true	false
false	true

$\Rightarrow>$	true	false
true	true	false
false	true	true

$==$	true	false
true	true	false
false	false	true

4.4 Determining a Boolean expression's value

Evaluating an expression in reverse Polish notation is easy using a stack, as in the following example.

Step	Stack	Expression left to scan		
1	\$	true false \&\& true ! false ! \&\& \|	\$	
2	\$ true	false \&\& true ! false ! \&\& \|	\$	
3	\$ true false	\&\& true ! false ! \&\& \\| \mid \$		
4	\$ false	true ! false ! \&\& \|	\$	
5	\$ false true	! false ! \& \\|	\$	
6	\$ false false	false ! \&\& \|	\$	
7	\$ false false false	! \&\& \|	\$	
8	\$ false false true	\&\& \|	\$	
9	\$ false false	\\| ${ }^{\text {S }}$		
10	\$ false	\$		

Initially, the stack is empty; for expositional purposes, we use $\$$ to denote the bottom of the stack so we can tell it is empty. Initially, we start with the entire expression; we mark its end using a $\$$. The rules are:

- If the next token is true or false, push it onto the stack.
- If the next token is a binary operator op, i.e., one requiring two operands, remove the top two elements of the stack (saving the first as operand2 and the second as operand1), apply operator op to operand1 and operand2, and push the result back onto the stack. If it is impossible to remove two elements from the stack (i.e., it has fewer than two elements), the Boolean expression is not well-formed (i.e., it has incorrect syntax).
- If the next token is a unary operator op, i.e., one requiring one operand, remove the top element of the stack (saving it as operand1), apply operator op to operand1, and push the result back onto the stack. If it is impossible to remove an element from the stack (i.e., it is empty), the Boolean expression is not well-formed (i.e., it has incorrect syntax).
- If the next token is $\$$, stop. If the stack has one value, it is the expression's value. Otherwise, the expression is not well-formed.

For example, the first two steps move Booleans from the expression to the stack. In the third step, the \&\& operator beginning the expression is removed, the top two Boolean expressions are popped off the stack, and the result is pushed on the stack. In step 10, the entire expression has been processed. Since there is one Boolean on the stack, it is the value of the expression and the expression was well-formed.

4.5 Programming an evaluator

In this part of the assignment, you are to add code to program evaluate-bool.cpp ${ }^{4}$. Specifically, you are to write a function evaluate() evaluating a Boolean expression. As indicated by the function prototype, the function is to have two parameters. The first (input) parameter is an expression in reverse Polish notation, represented as a vector<string>. The second (output) parameter is the value of the expression. If the input expression is well-formed, the function should store its value (expressed as a string - "true" or "false") in the second parameter and return the

[^2]Boolean value true. If the input expression is not well-formed, the function should return the Boolean value false. The provided code reads a Boolean expression from standard input, calls evaluate (), and prints the result.

Input, as indicated in the header comments, is a Boolean expression in reverse Polish notation. Here are some examples of possible input expressions:

```
true false ! ||
false false &&
true false
false true && &&
```

Observe that the last two expressions are not well-formed. This should be detected by your evaluate() function. Observe also that the end of the expression is indicated by the end of the vector; that is, there is no explicit marker $\$$ as there was in the example shown earlier.

5 What files do I need?

For the first part of the assignment (writing a templatized stack class), you may start from scratch, or you may make use of the following files:

- stack. h^{5} provides a very minimal class definition.
- test-stack. cpp ${ }^{6}$ provides a very minimal test program.

For the second part of the assignment (completing the evaluate-bool program), you will need the following file:

- evaluate-bool.cpp ${ }^{7}$.

Add to this file an evaluate() function and any needed helper functions. A prototype for evaluate () is already included. You should not need to make any changes in this program other than adding code for the evaluate() function and possibly some helper functions.

6 What to turn in

Submit the following two source-code files:

- Your implementation of the stack class (stack.h).
- Your revised/completed version of the evaluate-bool program (evaluate-bool.cpp).

You do not need to submit a test program for the stack class. Submit your source code as described in the Guidelines for Programming Assignments ${ }^{8}$. For this assignment use a subject line of "cs1321 hw 7".

[^3]
7 Hints, tips, etc.

7.1 Program debugging

The gdb debugger allows you to run your program in stop-motion form, i.e., to step through it a line at a time, examining variables as you go. This section attempts to present just enough information about gdb to get you started; for more information, see J. Oldham's short introduction ${ }^{9}$, or the complete on-line manual ${ }^{10}$. To use gdb, proceed as follows.

1. Compile your program using the -g compiler flag, e.g.,
```
g++ -g -Wall -pedantic foo.cc -o foo
```

This causes the compiler to write information used by the debugger.
2. Start gdb by typing
gdb foo
(Replace foo with the name of your executable, e.g., a.out.)
3. Set up to step through your program by typing the following gdb commands:

```
break main
run
```

If your program needs command-line arguments, include them in the run command, e.g.,
run anArgument anotherArgument
4. Use the following commands to step through your program and examine variables:

- n or next to execute the next line of the program, including all function calls.
- s or step to execute the next line of the program, "stepping into" any called functions. That is, if the next two lines are

```
x = foo(10);
cout << x << endl;
```

n will take you to the line outputting the value of x , while s will take you to the first line of function foo.

- 1 or list to list surrounding lines of source code.
- p or print to display the value of a variable. For example, if you have the following declarations:

```
int x;
double y[10];
pair<char,char> z;
```

then the following commands should all work:

$$
\begin{aligned}
& \text { p x } \\
& \text { p y [5] } \\
& \text { p z.first }
\end{aligned}
$$

[^4]- h or help, optionally followed by the name of a gdb command, to get help.

Just pressing return repeats the most recent command again.
5. Exit gdb by typing q or quit.
gdb also runs very nicely under emacs and xemacs; the main editor window is split into two windows, one for gdb commands and output and the other showing source code (with an arrow indicating the next line to execute). To try this out, start emacs or xemacs and type $M-x$ gdb. (The $M-x$ is "meta-x", probably either Alt-x or ESC-x on your keyboard.) You will be prompted for the name of the program; type in the name of your executable (e.g., a.out or foo).

You might also want to try $x x g d b$, which provides a graphical interface for $g d b$. Start it up by typing xxgdb foo, where foo is the name of your executable.

[^0]: ${ }^{1}$ © 2001 Jeffrey D. Oldham (oldham@cs.stanford.edu) and Berna L. Massingill (bmassing@cs.trinity.edu). All rights reserved. This document may not be redistributed in any form without the express permission of at least one of the authors.

[^1]: ${ }^{2}$ http://www.sgi.com/tech/stl/stack.html
 ${ }^{3}$ http://www.cs.trinity.edu/ ${ }^{\text {b bmassing/CS1321_2001fall/SamplePrograms/deque.h }}$

[^2]: ${ }^{4}$ http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW07/Problems/evaluate-bool.cpp

[^3]: ${ }^{5}$ http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW07/Problems/stack.h
 ${ }^{6}$ http://www.cs.trinity.edu/~ bmassing/CS1321_2001fall/HW07/Problems/test-stack.cpp
 ${ }^{7}$ http://www.cs.trinity.edu/~bmassing/CS1321_2001fall/HW07/Problems/evaluate-bool.cpp
 ${ }^{8}$ http://www.cs.trinity.edu/~ bmassing/CS1321_2001fall/Notes/pgmguidelines/index.html

[^4]: ${ }^{9}$ http://www.cs.trinity.edu/~bmassing/Misc/jdo-1321/lectures/gdb/
 ${ }^{10}$ http://www.gnu.org/manual/gdb-4.17/gdb.html

