
CSCI 1321 (Principles of Algorithm Design II), Spring 2001

Homework 71

Assigned: April 6, 2001.

Due: April 14, 2001, at 5pm.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

Contents

1 Reading 1

2 Overview 2

3 Stacks 2
3.1 Introduction . 2
3.2 Stack implementation . 2
3.3 Stack implementation tips . 3

4 Boolean expressions 3
4.1 Boolean expressions and reverse Polish notation . 3
4.2 Well-formed expressions . 4
4.3 Truth tables . 4
4.4 Determining a Boolean expression’s value . 5
4.5 Tautologies . 5
4.6 Programming an evaluator . 6

5 What files do I need? 7

6 What to turn in 7

7 Hints, tips, etc. 8
7.1 Running time of the tautology checker . 8
7.2 Program debugging . 8

1 Reading

The textbook’s chapter 6 covers defining templatized classes. Chapter 7 discusses stacks. Be sure
to read Section 7.4, concentrating on reverse Polish notation expressions.

1 c© 2001 Jeffrey D. Oldham (oldham@cs.stanford.edu) and Berna L. Massingill (bmassing@cs.trinity.edu).
All rights reserved. This document may not be redistributed in any form without the express permission of at least
one of the authors.

1

CSCI 1321 Homework 7 Spring 2001

2 Overview

You are to implement a stack data structure capable of holding any element type. Then you are
to write code using the stack to evaluate a Boolean expression written in reverse Polish notation.
Combining this with distributed source code tautology-checker.cpp2 yields a program that checks
Boolean expressions for tautologies.

3 Stacks

3.1 Introduction

A stack is a last-in/first-out data structure with objects arranged in linear order. That is, it permits
easy access only from one end. Entries can be added or removed only at the rightmost end. For
example, the STL stack class3 class implements a stack.

Your implementation should support the operations listed in the following table. These operations
are similar but not identical to those provided by the STL stack class.

Function prototype Example use Explanation

value type value type x; type of items on stack.

size type size type n; type for size of stack (number
of elements).

stack<T>(void) stack<int> s; creates a stack of elements
with type T but no items.

bool empty(void) const; bool b = s.empty(); returns true if stack has no el-
ements, false otherwise.

size type size(void)

const;

stack<int>::size type sz

= s.size();

returns number of elements
currently in stack.

void push(const

value type & x);

s.push(x); adds x to stack.

void pop(void); s.pop(); pops (removes) top element of
stack. Nothing is returned. It
is the user’s responsibility to
ensure the stack is not empty
before calling this function.

value type top(void)

const;

int x = s.top(); returns top element of stack
without changing the stack. It
is the user’s responsibility to
ensure the stack is not empty
before calling this function.

3.2 Stack implementation

You can choose any implementation strategy you like for your stack class except that you may
not use the STL stack class. It should be possible to use your templatized class to create and
manipulate stacks of ints, doubles, strings, bools, etc., with any number of elements. Your

2http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/

tautology-checker.cpp
3http://www.sgi.com/tech/stl/stack.html

2

CSCI 1321 Homework 7 Spring 2001

implementation should correctly use dynamic memory (i.e., deep rather than shallow copies, no
memory leaks, etc.). Observe, however, that you may be able to achieve this goal with very little
effort, if you implement your class using a class that already uses dynamic memory correctly (as we
did when we defined a double-ended queue class deque.h4 using our doubly-linked-list (dll) class).
You may similarly use any class we have defined in lecture, or any STL class (except for stack).

3.3 Stack implementation tips

• You may want to begin by implementing a stack with a typedef statement declaring the type
of its elements:

typedef string value type;

Then templatize the class and test using a different type. Using a different type will check
that all occurrences of value type were actually found.

• The typename C++ keyword provides alternative syntax for defining templates. In the text-
book, template parameters are declared using syntax such as <class T>. An alternative
syntax is <typename T>.

The typename keyword is also useful whenever the compiler cannot determine that an ex-
pression is a type, as in the following example:

typedef typename stack<T>::size type foo;

Exactly when and why this is necessary is apparently only obvious to people who have com-
pilers inside their heads. Heuristic: If the compiler becomes terribly confused about a type,
and the type contains a template parameter, try adding the keyword typename before the
expression.

4 Boolean expressions

4.1 Boolean expressions and reverse Polish notation

A Boolean expression consists of variables, true, and false connected together by Boolean oper-
ators &&, ||, =>, !, and ==, and possibly parentheses. For example,

(x && y) || (! x && ! y)

and

! p || true

are Boolean expressions. Using infix notation, where the Boolean operators appear between their
operands, can require using parentheses. Instead, we will use reverse Polish notation. Using this
notation, the previous expressions are written as

x y && x ! y ! && ||

and

p ! true ||

4http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/SamplePrograms/deque.h

3

CSCI 1321 Homework 7 Spring 2001

Reverse Polish notation first lists the two operands (using reverse Polish notation, if they are
expressions) and then the operator. For example: In the second example, the first operand is
! p, the operator is ||, and the second operand is true. The reverse Polish notation for the first
operand is p !. Listing the two operands and then the operator yields the expression.

4.2 Well-formed expressions

Intuitively, a well-formed expression has the correct number of operands and operators arranged in
the correct order. It is defined recursively:

A well-formed expression is either true, false, a variable, or an expression p q &&,
p q ||, p q =>, p q ==, or p !, where p and q are well-formed expressions.

4.3 Truth tables

To evaluate Boolean expressions, we need to be able to evaluate the simplest Boolean expressions,
as follows.

• o1 o2 && is true if and only if both o1 and o2 are true.

• o1 o2 || is false if and only if both o1 and o2 are false.

• o1 ! is the opposite of o1 (true if o1 is false, false if o1 is true).

• o1 o2 => reads as “if o1, then o2.” It is true if o1 is false or o2 is true. It is false if and only if
o1 is true and o2 is false.

• o1 o2 == is true if o1 and o2 have the same truth value.

We could also express these rules in the form of truth tables as follows:

&& true false

true true false
false false false

|| true false

true true true
false true false

!

true false
false true

=> true false

true true false
false true true

== true false

true true false
false false true

4

CSCI 1321 Homework 7 Spring 2001

4.4 Determining a Boolean expression’s value

Evaluating an expression in reverse Polish notation is easy using a stack, as in the following example.

Step Stack Expression left to scan

1 $ true false && true ! false ! && || $
2 $ true false && true ! false ! && || $
3 $ true false && true ! false ! && || $
4 $ false true ! false ! && || $
5 $ false true ! false ! && || $
6 $ false false false ! && || $
7 $ false false false ! && || $
8 $ false false true && || $
9 $ false false || $

10 $ false $

Initially, the stack is empty; for expositional purposes, we use $ to denote the bottom of the stack
so we can tell it is empty. Initially, we start with the entire expression; we mark its end using a $.
The rules are:

• If the next token is true or false, push it onto the stack.

• If the next token is a binary operator op, i.e., one requiring two operands, remove the top
two elements of the stack (saving the first as operand2 and the second as operand1), apply
operator op to operand1 and operand2, and push the result back onto the stack. If it is
impossible to remove two elements from the stack (i.e., it has fewer than two elements), the
Boolean expression is not well-formed (i.e., it has incorrect syntax).

• If the next token is a unary operator op, i.e., one requiring one operand, remove the top
element of the stack (saving it as operand1), apply operator op to operand1, and push the
result back onto the stack. If it is impossible to remove an element from the stack (i.e., it is
empty), the Boolean expression is not well-formed (i.e., it has incorrect syntax).

• If the next token is $, stop. If the stack has one value, it is the expression’s value. Otherwise,
the expression is not well-formed.

For example, the first two steps move Booleans from the expression to the stack. In the third
step, the && operator beginning the expression is removed, the top two Boolean expressions are
popped off the stack, and the result is pushed on the stack. In step 10, the entire expression has
been processed. Since there is one Boolean on the stack, it is the value of the expression and the
expression was well-formed.

4.5 Tautologies

In addition to Boolean expressions involving only true, false, and the operators described earlier,
we can write Boolean expressions involving variables. Such an expression has a value for any
assignment of Boolean values to its variables. For example, consider the expression p q ||. There
are 22 ways of assigning values to its two variables, since each variable can be either true or false.

5

CSCI 1321 Homework 7 Spring 2001

For each way of assigning values to p and q, we can then evaluate the resulting expression. The
result is false if both p and q are false and true for the other three choices.

A tautology is a Boolean expression that evaluates to true for all possible ways of assigning values
to its variables. For example,

true

is a tautology, as are

x x ==

and

x ! x ||

and

x x ==y y == &&

since all evaluate to true for any way of assigning values to their variables. However,

x

and

x y =>

are not tautologies, because there is some way of assigning values to their variables that makes
them evaluate to false.

Given a Boolean expression with N variables, one way of determining whether it is a tautology is
to evaluate the 2N possible expressions resulting from assigning different combinations of Boolean
values to the N variables. If all of them evaluate to true, the original expression is a tautology;
otherwise it is not.

4.6 Programming an evaluator

In this part of the assignment, you are to add code to program tautology-checker.cpp5.

Specifically, you are to write a function evaluate() evaluating a Boolean expression without any
variables. The function is to take as input an expression in reverse Polish notation, represented as
a vector<string>; it is to return a pair of Booleans, the first indicating whether the expression
was well-formed and, if well-formed, the second indicating the expression’s value.

The provided code reads a Boolean expression with variables from the standard input and cycles
through all possible variable assignments, invoking evaluate() to determine the expression’s value.
If the expression is true for all assignments, the program indicates that it is a tautology. Otherwise,
the program indicates that it is not a tautology or is not well-formed.

The user-provided expression must be in reverse Polish notation with all variables, operators, and
keywords separated by whitespace. Any whitespace-delimited sequence of characters other than an
operator, true, or false is considered to be a variable. Here are some examples of possible input
expressions, each involving two variables:

5http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/

tautology-checker.cpp

6

CSCI 1321 Homework 7 Spring 2001

x y ! ||

hello goodbye &&

hello goodbye

hello goodbye && &&

Observe that the last two expressions are not well-formed. This should be detected by your
evaluate() function.

Notice that although input to the program can include variables, input to your evaluate() function
will consist of true, false, and operators only. The end of the expression is indicated by the end
of the vector; that is, there is no explicit marker $ as there was in the example shown earlier.

5 What files do I need?

For the first part of the assignment (writing a templatized stack class), you may start from scratch,
or you may make use of the following files:

• stack.h6 provides a very minimal class definition.

• test-stack.cpp7 provides a very minimal test program.

For the second part of the assignment (completing the tautology-checker program), you will need
the following file:

• tautology-checker.cpp8.

Add to this file an evaluate() function and any needed helper functions. A prototype for
evaluate() is already included. You should not need to make any changes in this program other
than adding code for the evaluate() function and possibly some helper functions.

6 What to turn in

Submit the following two source-code files:

• Your implementation of the stack class (stack.h).

• Your revised/completed version of the tautology-checker program (tautology-checker.cpp).

Submit these files as described in the Guidelines for Programming Assignments9. For this assign-
ment use a subject line of “cs1321 hw 7”.

You do not need to submit a test program for the stack class.

6http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/stack.h
7http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/test-stack.cpp
8http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/

tautology-checker.cpp
9http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Notes/pgmguidelines/index.html

7

CSCI 1321 Homework 7 Spring 2001

7 Hints, tips, etc.

7.1 Running time of the tautology checker

Given a Boolean expression with v variables and n operators, our tautology checker requires time
roughly proportional to 2vn time. While exponential running times are acceptable for small values
of v, they quickly become infeasible. If you want to see this in action, you can use Perl program
generate-tautology.pl10 to generate input for the tautology checker. It takes one command-line
argument specifying the number of variables. (To use this program, save it into a file and make
the file executable with the command chmod +x generate-tautology.pl.) To time the tautology
checker program, you can use the timer() function in timer.h11.

Can we find a faster algorithm? No one has yet been successful. There is a family of NP-complete
problems, all of which are currently thought to be difficult to solve. We can prove that if any
of these problems can be solved in polynomial time, i.e., in time roughly proportional to nk for
some fixed k, then all these problems can be solved in polynomial time; conversely, if one of these
problems can be proved to require more than polynomial time, then they all do. Satisfiability,
i.e., answering the question “is there an assignment making the Boolean expression true?,” is the
most famous NP-complete problem. The tautology problem is at least as hard as, or harder than,
satisfiability. so do not be frustrated by not finding a faster algorithm. (You would become very
famous among computer scientists if you found one!) For more information, read Foundations of
Computer Science, by Alfred V. Aho and Jeffrey D. Ullman, ISBN 0-7176-8233-2, p. 649.

7.2 Program debugging

The gdb debugger allows you to run your program in stop-motion form, i.e., to step through it a line
at a time, examining variables as you go. This section attempts to present just enough information
about gdb to get you started; for more information, see J. Oldham’s short introduction12, or the
complete on-line manual13.

To use gdb, proceed as follows.

1. Compile your program using the -g compiler flag, e.g.,

g++ -g -Wall -pedantic foo.cc -o foo

This causes the compiler to write information used by the debugger.

2. Start gdb by typing

gdb foo

(Replace foo with the name of your executable, e.g., a.out.)

3. Set up to step through your program by typing the following gdb commands:

break main

run

10http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/

generate-tautology.pl
11http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW07/Problems/timer.h
12http://www.cs.trinity.edu/~bmassing/Misc/jdo-1321/lectures/gdb/
13http://www.gnu.org/manual/gdb-4.17/gdb.html

8

CSCI 1321 Homework 7 Spring 2001

If your program needs command-line arguments, include them in the run command, e.g.,

run anArgument anotherArgument

4. Use the following commands to step through your program and examine variables:

• n or next to execute the next line of the program, including all function calls.

• s or step to execute the next line of the program, “stepping into” any called functions.
That is, if the next two lines are

x = foo(10);

cout << x << endl;

n will take you to the line outputting the value of x, while s will take you to the first
line of function foo.

• l or list to list surrounding lines of source code.

• p or print to display the value of a variable. For example, if you have the following
declarations:

int x;

double y[10];

pair<char,char> z;

then the following commands should all work:

p x

p y[5]

p z.first

• h or help, optionally followed by the name of a gdb command, to get help.

Just pressing return repeats the most recent command again.

5. Exit gdb by typing q or quit.

gdb also runs very nicely under emacs and xemacs; the main editor window is split into two windows,
one for gdb commands and output and the other showing source code (with an arrow indicating
the next line to execute). To try this out, start emacs or xemacs and type M-x gdb. (The M-x is
“meta-x”, probably either Alt-x or ESC-x on your keyboard.) You will be prompted for the name
of the program; type in the name of your executable (e.g., a.out or foo).

You might also want to try xxgdb, which provides a graphical interface for gdb. Start it up by
typing xxgdb foo, where foo is the name of your executable.

9

