
CSCI 1321 (Principles of Algorithm Design II), Spring 2001

Homework 81

Assigned: April 18, 2001.

Due: April 27, 2001, at 5pm.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

Contents

1 Reading 1

2 Overview 1

3 Details 2
3.1 Input and output specifications . 2
3.2 A strategy for solving the problem . 3

4 What files do I need? 3

5 What to submit 3

6 Hints, tips, etc. 4
6.1 C++ programming tip: conditional compilation . 4

1 Reading

Read chapter 10. Sections 7.4 and and 10.4 on tree traversals may be useful for this homework.

2 Overview

You are to convert an infix arithmetic expression to postfix notation using a tree as an intermediary
data structure. You may solve the problem in any way you desire as long as it conforms to the
input and output specifications, except that you may not use a stack.

1 c© 2001 Jeffrey D. Oldham (oldham@cs.stanford.edu) and Berna L. Massingill (bmassing@cs.trinity.edu).
All rights reserved. This document may not be redistributed in any form without the express permission of at least
one of the authors.

1

CSCI 1321 Homework 8 Spring 2001

3 Details

3.1 Input and output specifications

Your program should read an infix arithmetic expression from the standard input and print the
equivalent postfix arithmetic expression to the standard output. It should also print an error
message if the input is not a well-formed infix arithmetic expression.

Infix arithmetic expressions are recursively defined: An infix expression is:

• a variable name or number, or

• something of the following form

(expression operator expression)

For this assignment, we require that the five pieces of the second form (two parentheses, two expres-
sions, and an operator) be separated by whitespace; in particular, there must be whitespace before
and after the parentheses. We also define a variable, number, or operator to be any whitespace-
delimited word other than “(”. (This permits some fairly silly-looking “expressions”, but it makes
your job easier.)

Postfix arithmetic expressions are similarly defined; a postfix expression is:

• a variable name or number, or

• something of the following form

expression expression operator

No parentheses are permitted.

Here are some examples of input and output to the function:

Input Output Notes

256.46 256.46

hello hello

hello xyz Input expression is not

well-formed.

does not match either case of
the recursive definition.

(xyz + 45) xyz 45 +

(xyz qwerty zz) xyz zz qwerty “matches” the second case, if
in a silly way.

(x y z Input expression is not

well-formed.

(xyz + (abcd * 10)) xyz abcd 10 * +

Reminder/hint: You can easily read a whitespace-delimited word by using the usual C++ >>

operator and the string class, as in the following example:

string s;

cin >> s;

2

CSCI 1321 Homework 8 Spring 2001

3.2 A strategy for solving the problem

Infix arithmetic expressions, postfix arithmetic expressions, trees, in-order tree traversal, and pos-
torder tree traversal are all recursively defined. Thus, it is reasonable to think of using recursive
functions to manipulate them.

Here is a possible sequence of steps to solve the problem:

1. Write a recursive function that reads an infix arithmetic expression from an istream and
stores it in a tree (of strings). You can check that this function is working by printing the
contents of the resulting tree.

2. Separately, write a recursive function that takes a tree and produces a postfix arithmetic
expression.

3. Combine the two functions.

4 What files do I need?

You will (or might) need the following files:

• tree.h2 contains a recursively-defined template class Tree as discussed in class. As with the
Seq template class, you should not need to read the code for the Tree class in order to use
it; see the example use program tree-use.cpp3 or this short description of the class4.

• infix2postfix.cpp5 contains very partial code for the program you are to write. (That is, it’s
a start, but there is much to fill in.)

• tree-debug.h6 contains a function printTree() to print the contents of a tree. (This might
be useful during development/debugging.) This function takes two parameters, an ostream

to print to (e.g., cout) and a Tree to print. To use this code:

1. Make sure a copy of tree-debug.h is in your directory.

2. Add #include "tree-debug.h" at the top of the file using printTree().

3. When compiling, be sure to add -DDEBUG as a compiler flag. See the description of
conditional compilation in the section below.

See the comments in tree-debug.h for additional information, and/or look at tree-debug-use.cpp7

to see an example of using this code.

5 What to submit

Submit only your completed implementation, consisting of file infix2postfix.cpp. Submit this
files as described in the Guidelines for Programming Assignments8. For this assignment use a
subject line of “cs1321 hw 8”.

2http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/SamplePrograms/tree.h
3http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/SamplePrograms/tree-use.cpp
4http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Notes/jdo-trees/
5http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW08/Problems/infix2postfix.cpp
6http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW08/Problems/tree-debug.h
7http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW08/Problems/tree-debug-use.

cpp
8http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Notes/pgmguidelines/index.html

3

CSCI 1321 Homework 8 Spring 2001

6 Hints, tips, etc.

6.1 C++ programming tip: conditional compilation

Frequently, programmers want to use the same C++ files to produce different executable programs.
For example, when developing code, it is frequently useful to print debugging messages, but, after
development finishes, these debugging messages are a nuisance. Thus, it is convenient to be able to
decide at compile time whether to include or exclude the code producing the debugging messages.

File tree-debug.h9, described earlier, uses the preprocessor statements #ifdef DEBUG and #endif

to delimit the statements that should only be executed when debugging a program. #ifdef DEBUG

abbreviates #if defined(DEBUG), which yields true only if the preprocessor symbol DEBUG is de-
fined. #endif marks the end of the conditional section.

To tell the compiler that the preprocessor symbol DEBUG should be defined and thus the debugging
statements should be included in the executable, compile with the -DDEBUG compiler flag. For
example,

g++ -Wall -pedantic -DDEBUG infix2postfix.cc -g -o infix2postfix

-D precedes the preprocessor symbol to define. Omitting -DDEBUG when compiling omits the state-
ments between the #ifdef and #endif. DEBUG is not a C++ variable, function, or any other C++
thing; it is a preprocessor symbol that can only be manipulated using a -D compiler flag. We could
just as well have used the symbol FRED in our code; then we would compile with (or without) the
compiler flag -DFRED. (This “preprocessor” is a macro processor that in essence serves as a first
step of the C++ compilation processor. You can read more about it in its “info” pages, using the
command info cpp.)

9http://www.cs.trinity.edu/~bmassing/CS1321_2001spring/Homeworks/HW08/Problems/tree-debug.h

4

