
CSCI 1321 September 4, 2003

Slide 1

Administrivia

• Next week I will be at a conference. The plan is to have no class Tuesday and

a guest lecturer Thursday.

• Information about Homework 1 is on the Web (including overall “Project

Description” document). The “design” is due Thursday. Ideally, use Together.

As a fallback, just send text e-mail.

• Part of this assignment is getting used to tools, procedures, etc. Also, a goal

of the project is to give you practice with finding things out for yourselves. So

if you have trouble:

– Review the project and assignment descriptions.

– Check the online APIs (for Java library and Dr. Lewis’s code).

– Ask! Next week, I may have e-mail access, or try Dr. Lewis.

• Your student ID should get you into our lab rooms whenever the building is

open — not yet, but should be working soon.

Slide 2

Program Structure

• Syntax for most things is at least similar to C++ (sometimes the same), but

there are some differences.

• Define classes much as in C++ (variables and methods).

• No not-in-a-class variables or code; no preprocessor directives.

• Access ranges from public to private. Usually “good style” to make

variables private.

• Variables can be static (one copy per class) or regular (one copy per

instance of class).

• Methods can be static (no object required) or regular (applied to an

instance of the class).

CSCI 1321 September 4, 2003

Slide 3

Naming Conventions

• Java library classes and methods follow these conventions; if you do too, your

code will be easier for experienced Java programmers to read:

– If it’s mixed-case and starts with uppercase, it’s a class.

– If it’s mixed-case and starts with lowercase, it’s a variable or method.

– If it’s all uppercase, it’s a constant.

Slide 4

Program Compilation and Execution

• Java source code is (usually?) compiled to “byte code”.

• No link step.

• To run program, start JVM and specify class that contains main method; other

classes are loaded as needed.

• How are these classes found? “classpath” says where to look — can include

directories and “JAR” (Java archive) files.

CSCI 1321 September 4, 2003

Slide 5

Java Libraries

• Library classes grouped into “packages”.

• For classes in java.lang and “default package”, reference using their

names only.

• For other classes, can use full name or import. (import looks like

#include, but works differently.)

• Documentation is online — “Java API”.

Slide 6

Variables

• Primitive types provided for efficiency (not purely object-oriented):

– boolean, short, int, long, float, double are pretty much as

in C++.

– char is 16-bit Unicode.

– byte is 8-bit byte.

• All other variables are references to objects, similar to pointers:

– MyClass x creates a reference, not an object — use new to create

objects.

– No need to explicitly free/delete objects — Java has “garbage collection”.

– Value of null means it doesn’t point to anything.

CSCI 1321 September 4, 2003

Slide 7

Referencing Variables and Methods

• Reference variables (e.g., v) much as in C++:

– In the “current object”, v.

– In otherObj, otherObj.v.

– If static, Class.v.

• Reference methods (e.g., foo()) also much as in C++:

– On the “current object”, foo().

– On otherObj, otherObj.foo().

– If static, Class.foo().

Slide 8

Passing Parameters

• Syntax is like C++.

• Everything is passed by value — but for reference variables, copying just

creates two pointers to the same object, and the called method can change

the object.

CSCI 1321 September 4, 2003

Slide 9

Arrays, Briefly

• Syntax is like C++, except for explicit new:

– int[] x = new int[10]; creates 10 integers.

– String[] args = new String[20]; creates 20 references

to strings.

• Arrays are “first-class” objects, with length variable.

• Java checks for out-of-bounds array references.

Slide 10

Comments

• Can use C-style comments, C++-style comments.

• One type of C-style comments are special — “documentation comments” or

“Javadoc comments”. These start with /** and end with */, and the

command-line tool javadoc or Together’s “Generate HTML

Documentation” function turn them into HTML documentation like the Java

library API. Use them!

CSCI 1321 September 4, 2003

Slide 11

Control Structures

• Most control structures are the same as C++ — if , while, do, switch,

for, etc.

• Also have “exceptions” — a way to deal with unusual or error conditions,

break out of current flow of control. Can be “thrown” and “caught” (or not

caught, in which case the program crashes). More about them later.

Slide 12

Miscellaneous Other Stuff

• No operator overloading (except “+” for String class).

• On reference variables, = and == operate on references, not objects. (So,

you may instead want copy constructors or equals().)

• No C-style strings, but a String class.

CSCI 1321 September 4, 2003

Slide 13

Minute Essay

• No minute essay today — just write your name (and any comments you have

about whether you feel prepared for the homework).

• Instead, a very short demo of creating a project (collection of related code)

with Together . . .

