
CSCI 1321 September 11, 2003

Slide 1

Administrivia

• “Design” phase of Homework 1 due today (at 11:59pm). If you have

last-minute questions, try e-mail. I’m likely to be lenient about late penalties

for this assignment.

• “Code” phase due Tuesday. There should be time to sort out last-minute

questions Tuesday (if not earlier via e-mail or office hours).

Slide 2

A Few More Java Basics

• final modifier:

– For variables — can’t change value after initialization (so constants are

usually final and static).

– For methods — can’t be overridden by subclasses (more about that later).

– For classes — can’t be subclassed (more later).

• Some classes are “immutable” — once created, objects can’t be changed.

(Why is this good/bad?) Example — String — if you look at the API, you

notice that methods that “change” the string actually return a new one.

CSCI 1321 September 11, 2003

Slide 3

Inheritance, Revisited

• Recall two roles from “short version” earlier — code reuse, subtypes.

• Recall that classes form a hierarchy/tree (with Object at root).

Slide 4

Inheritance and Code Reuse

• If class Shape defines

private String colorName;

public String getColorName();

then if Circle is a subclass of Shape, Circle also has variable

colorName and method getColorName.

• This can be a good way to reduce code duplication.

• If it’s not what you want, subclasses can “override” methods (or variables —

but this is not usually a good idea). In C++, this may require “virtual

functions”; in Java, all functions/methods are virtual.

• Or a superclass can leave methods unimplemented; subclasses must then

define — for Shape, area() could be abstract.



CSCI 1321 September 11, 2003

Slide 5

Inheritance and Subtypes

• In the “shapes” example, class Shape defines a type, and Circle and

Rectangle are subtypes. Anywhere we need a Shape, we can use a

Circle.

Shape s = new Circle();

(but not Circle = new Shape())

Slide 6

Multiple Inheritance Versus Interfaces

• What if you want a class to inherit from multiple classes? C++ allows this

(“multiple inheritance”). To avoid possible confusion/ambiguity, Java doesn’t.

• Instead, define “interfaces” — classes in which all methods are abstract.

• In Shape example, we could define a HasColorName interface with

methods getColorName and setColorName.

• A class can “implement” as many interfaces as you like.

CSCI 1321 September 11, 2003

Slide 7

Interfaces and Types

• Interfaces also define types. So if Shape implements interface

HasColorName, we can use a Shape anywhere a HasColorName is

required.

HasColorName o = new Shape();

• This is “inclusion polymorphism” — and is what will allow your project code to

plug neatly into Dr. Lewis’s framework. (The framework is written in terms of

interfaces such as Block and Screen; your classes will implement those

interfaces.)

Slide 8

More Code

• We could write a class TestShapes to test Shape and its subclasses . . .



CSCI 1321 September 11, 2003

Slide 9

Minute Essay

• Try writing a Square class to fit in with the Shape example.


