
CSCI 1321 September 23, 2003

Slide 1

Administrivia

• Quiz solution available on Web.

• Info about tools coming soon.

• If your prox card doesn’t let you into the labs, talk to the people in the Tiger

Card Office. Supposedly we have told them who should have access!

Slide 2

Game Elements

• Playing field — “screens” (two-dimensional grids of “blocks” — can have

many kinds).

• “Player” character controlled by user input.

• Other “game entities” controlled by program.

• Menu bar; “game status panels” showing other info (e.g., score).

• Player and other entities each have “location” in terms of screen and

coordinates within screen; coordinates based on “graphics convention”.

• Screen maintains a list of entities on that screen.

• Global “priority queue” of all entities.

CSCI 1321 September 23, 2003

Slide 3

Game Framework

• What the game framework does at each “game tick”:

– Draws screen where player is, using methods of screen, block, and game

entity classes (including player).

– Updates each game entity that wants to be updated, including player.

Entities can move (change location) or do other things based on

surroundings — types of blocks, proximity to other entities, etc. Player can

also respond to keyboard or mouse input.

Slide 4

Overview of Homeworks

• Homework 2 — set up “playing field” (screen and block classes, game setup).

Replace BasicScreen and BasicBlock with your classes.

• Homework 3 — start defining player, how it responds to user input and

interacts with blocks. Replace BasicPlayer with your class.

• Homework 4 — start defining other entities, how they interact with player.

• Homework 5 — continue defining other entities, how they move and interact

with blocks.

• Homework 6 — define something using GUI classes (game status panel(s) or

menu items).

• Homework 7 — compare different implementations of key data structure.

• Homework 8 — finish game.



CSCI 1321 September 23, 2003

Slide 5

Homework 2

• Modify GameSetup — should be relatively straightforward. Can take one of

two approaches:

– Create configuration (screens, blocks, entities) yourself. Good to do for

initial debugging.

– Use “screen editor” to create configuration and save in binary file, read in

file. Program uses your screen class.

• Write classes implementing Block interface — use BasicBlock as a

model, but do not subclass it. Okay to define your own “master block class”

and subclasses.

• Write class implementing Screen interface — replacement for

BasicScreen, not subclass.

Slide 6

Defining a Class

• What methods do I need? If implementing an interface, you at least need

those. May want additional methods.

• What variables do I need to implement the needed methods? e.g., to

implement Screen interface you probably need a two-dimensional grid

(array) of blocks and a list of entities.

• “Good style” tips:

– Make methods public if needed by code that uses your class, private

otherwise.

– Make variables private unless there’s a good reason not to — prevents

unwanted/inconsistent access.

– Use named constants (static final variables) rather than hard-coded

values.

E.g., private static final screenWidth = 20;

CSCI 1321 September 23, 2003

Slide 7

Arrays in Java

• Arrays are objects — unlike in C/C++, where they’re basically pointers.

• Declaring (references to) arrays — denote by putting brackets after type (or

use syntax shown in book).

• Creating arrays — use new, e.g.,

new int[10]

new String[n]

(Remember that the second one only creates references.)

• All arrays have length variable.

• Otherwise, syntax is same as C/C++; indices start at 0.

• Java runtime does automatic bounds-checking — unlike in C/C++, get

ArrayBoundsException rather than random problems.

Slide 8

Multidimensional Arrays

• “Arrays of arrays”, e.g.,

int[][] x = new int[10][100];

• For 2D arrays, first index is row, second is column. (Note that this is not the

“graphics convention” used in the game.)



CSCI 1321 September 23, 2003

Slide 9

Minute Essay

• Write code to define an array of four Strings and fill it with data of your

choice.

• Write code to define a two-by-three array of int and set each element to the

sum of its row and column.


