
CSCI 1321 October 21, 2003

Slide 1

Administrivia

• Midterm grades mailed. Letter grades are approximate and conservative.

• Homework 4 code officially due today, but okay to turn in tomorrow by

midnight.

Up to 5 points extra credit if you include a main method in your entity-list

class that tests the class. (To do this, you probably need a DummyEntity

class.)

Slide 2

Error Handling — The Problem

• When you have a function in which something goes wrong, how do you tell

the rest of the program?

• Examples:

– Calling a square-root function with a negative number.

– Trying to open (for reading) a file that doesn’t exist.

– Trying to convert a string to an integer, when the string doesn’t contain

something appropriate.

CSCI 1321 October 21, 2003

Slide 3

Error Handling — “Ostrich Approach”

• Idea — hope it doesn’t happen.

• Might sort of work if you tell users in your documentation, and maybe use

assertions.

• But users make mistakes, and what then? e.g., out-of-bounds array access.

• And it may not always be easy to tell what inputs will produce errors (e.g., file

access).

Slide 4

Error Handling — Return Codes

• Idea — have method return an error code if something goes wrong.

• Works well in situations where it might be hard to avoid sometimes causing

the error.

• But requires that users of the method check for the “error” return value —

tedious and error-prone.

• And what about methods that want to return a value? always possible to

designate some value as “this means an error”?

CSCI 1321 October 21, 2003

Slide 5

Error Handling — Setting Flags

• Idea — have method set a flag somewhere if something goes wrong.

• Also useful in situations where it might be hard to avoid sometimes causing

the error.

• Again, though, users have to check.

• Requires either an extra parameter (and changing it may be tricky in Java) or

a “global” variable somewhere.

Slide 6

Error Handling — Exceptions

• Idea — when something goes wrong, “throw an exception”. What then?

• Aside — as program runs, we can think of it keeping a stack of nested

method calls (“push” when we call a method, “pop” when one returns).

• When an exception is thrown, runtime system works its way up this stack until

it finds something to “catch” the exception. If it never finds anything, it

terminates the program (actually the thread).

• Mostly this is what Java library classes use to indicate errors — but some use

return codes, so read documentation carefully.

CSCI 1321 October 21, 2003

Slide 7

Dealing With Exceptions

• Catching an exception — “try block”:

try { }

catch (TypeOfException e) { }

catch (OtherTypeOfException e) { }

finally { } // optional

• Letting an exception “bubble up”:

void foo() throws WeirdException { }

• Exception class has some useful methods, e.g.,

printStackTrace.

Slide 8

Checked Versus Unchecked Exceptions

• “Checked exceptions” — ones that sensible programs are supposed to do

something about (e.g., file not found).

Must either catch these, or declare that your method lets them bubble up (and

then callers must do likewise).

• “Unchecked exceptions” — ones for which maybe the reasonable thing to do

is to just let the program crash.

Can catch these, or let them bubble up (with or without declaration), possibly

eventually crashing the program.

CSCI 1321 October 21, 2003

Slide 9

Throwing Exceptions

• Throwing an exception:

throw new TypeOfException(....)

• Usually best to try to find an existing Exception class that fits, but can

declare your own.

• Examples in stack and queue classes we wrote . . .

Slide 10

Exceptions Versus Other Approaches

• What’s the attraction?

– Nice mechanism for dealing with errors and unexpected events.

– Unlike return codes, can’t just be ignored.

• But checked exceptions can be annoying to deal with . . .

CSCI 1321 October 21, 2003

Slide 11

Minute Essay

• Here’s a line of code that can throw two kinds of exceptions:

FileInputStream fis = new FileInputStream("someFile");

Write a few lines of code to catch these exceptions and print out a meaningful

error message.

