
CSCI 1321 December 4, 2003

Slide 1

Administrivia

• Final exam will be option 2 — game presentations plus written exam.

• Homework 8 writeup on Web tomorrow. Grades on earlier homeworks coming

soon (by Monday?)

Slide 2

From Quiz 6

• “Which is faster?” question — many people missed.

(See quiz solution.)

CSCI 1321 December 4, 2003

Slide 3

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known

ports”, others available for applications

Slide 4

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.

CSCI 1321 December 4, 2003

Slide 5

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”

example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).

Slide 6

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket.

CSCI 1321 December 4, 2003

Slide 7

Networking in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too

Slide 8

Networking in Java — RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java ”remote object

class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• Compile and execute:

– Compile as usual, emphplus run rmi to generate ”stubs” to be used in

communicating with remote objects as remote objects.

– “Make classes network accessibl.

– Start rmiregistry.

– Run server and clients as usual.

CSCI 1321 December 4, 2003

Slide 9

Minute Essay

• Any requests for next Tuesday’s class?

