
1

Inheritance in Java

9-13-2005

2

Opening Discussion

● What did you talk about last class?
● Have you been doing any reading for this class?
● Read project description. Let's look at how we put

a JAR file in a project.

3

Inheritance

● The Java model of programming makes extensive
use of Inheritance, more than any other language I
know of.

● Normal inheritance plays two roles in
programming.
– When class B inherits from class A, it “reuses” all the

non-private methods and members of class A.
– B also becomes a subtype of A.

4

Inheritance Hierarchies

● The standard way of drawing out inheritance is
through a tree-like hierarchy.

● In UML the arrows point from the subclass to the
superclass. This is because the superclass
doesn’t generally know of all of its subclasses but
the subclasses know of the superclass.

5

Inheritance for Code Reuse

● The first side effect of inheritance is gaining
“copies of” non-private members.

● This means that if A had a public method foo()
then B will also have a public method foo().

● In the assignment I mentioned that MainFrame
inherits from javax.swing.Jframe and gets the
show() method from it.

6

Virtual Functions

● One of the powers of Java is that you don’t always
have to use the methods defined by the
superclass. You can override them in the
subclass.

● Methods that can be overridden are called virtual
methods. By default all methods in Java are
virtual.

● A method invocation uses the definition “closest”
to the actual class.

7

Final Keyword

● If you have a method that you don’t want to ever
be overridden, you can declare it as final.

● You can also declare an entire class to be final in
which case no subclasses can ever be written to
inherit from it.

● The final keyword is greatly underused in Java. It
requires thought, but should be used more.

8

Abstract Keyword

● You can declare a method in a class that doesn’t
have an implementation. This method must be
labeled as abstract.

● Any class that contains abstract methods must
also be labeled as abstract.

● You use abstract functions when a superclass
doesn’t have a good default implementation so all
subclasses should override it and give their
implementations.

9

Inheritance for Subtyping

● Inheritance also provides subtyping. This is in
part because the subclass has all the public
methods and members of the superclass.

● Formally, when we say that B is a subtype of A,
what we are saying is that any place in the code
where an A is expected, a B can be used, or a B
can always take the place of an A.

10

Inclusion Polymorphism

● This ability to substitute subtypes in place of
supertypes is what leads to inclusion
polymorphism.

● Inclusion polymorphism is a form of “universal
polymorphism” because there are an infinite
number of possible subclasses for any given class
(assuming it isn’t final).

11

Inclusion Polymorphism in the
Project

● Inclusion polymorphism is what allows my code to
work with what you are going to be writing.

● You are going to create subtypes of the types I
have defined. My code works with the supertypes
and through inclusion polymorphism it will work
with your subtypes as well.

12

Single Inheritance of Classes

● Java only allows single inheritance of classes.
That is to say that a class can only inherit from
one superclass.

● This greatly simplifies code by reducing ambiguity.
 C++ has multiple inheritance which causes one to
frequently need to specify which superclass of a
given class a method should be called through.

13

Interfaces

● Of course, C++ has multiple inheritance for a
reason, there are times when you want one type
to be a subtype of several supertypes.

● To deal with this Java has interfaces. An interface
is much like a class, but contains only method
signatures (all methods are abstract). They have
no implementations and no member data except
constants.

14

Interfaces Continued

● Java allows multiple inheritance from interfaces
because they can never create ambiguity.

● Implementing an interface only provides
subtyping, not code reuse.

● Subtypes of interfaces need to implement all of the
methods of that interface or they will be abstract.

15

The Project

● Now that you know a bit more about Java, let’s
look real quick at the project framework and some
more specifics about what you are going to be
doing during the semester.

16

Let’s Write Code

● Now we will use the rest of the time to write some
code in Eclipse that demonstrates a bit more
about Java and inheritance.

17

Minute Essay

● Inheritance is a very powerful tool, but it does
have pitfalls. Can you think of what some of the
problems might be with using inheritance? If not
don’t worry, they can be subtle so then write any
questions you have about inheritance or how it is
done in Java.

