
CSCI 1321 September 22, 2005

Slide 1

Administrivia

• Reminder: Homework 1 code due today (11:59pm). I have office hours this

afternoon if you need help.

• Method instance in BasicGameSetup mentions “singleton”. What’s

that about? Reference to “singleton design pattern” — idea that for some

classes there should only ever be one instance.

• Homework 2 to be on Web later today. (I’ll send you mail.) Please read

through for class next time, and we can spend a little class time answering

questions.

• When we have a quiz, I’ll post a sample solution on the Web shortly after the

quiz.

Slide 2

Recap — Classes and Objects

• Objects are a “nice” way of packaging together related data and code — a

little like C struct but with code too.

• A class is a template for making objects — defines variables (one copy per

object, unless static) and related functions (“methods”).

• Non-static methods operate on objects — must have an object to apply them

to, which acts like a hidden parameter to the method.

• Static methods don’t have this hidden parameter — more like C functions.

• Java variables are either “primitives” (like C variables) or references to

objects. Objects are created only with new.



CSCI 1321 September 22, 2005

Slide 3

String Class — Example of Using a Class

• Recall — no C-style strings (arrays of characters ending in null character) in

Java. Instead, String class. (C++ has a similar library class, string.)

• To see what’s available, look at the API . . .

Slide 4

String Class, Continued

• In general, no operator overloading in Java, with one exception — “+” for

strings.

• To compare two strings, “==” is rarely what you want. Instead, use equals.

• Strings are “immutable” — once created, can’t be changed. (Why? allows

them to be safely shared.) Methods you would think change the value return

a new string.

• Use StringBuffer if you need something you can change, or for

efficiency.



CSCI 1321 September 22, 2005

Slide 5

Defining a Class

• What methods do I need? If implementing an interface, you at least need the

methods in the interface. May want additional methods. If making a subclass,

remember you automatically inherit all methods from superclass. Can

override them and/or provide additional methods.

• What variables do I need to implement the needed methods? e.g., if defining

a Rectangle class that has a getArea method, probably need either

area or width and height.

Slide 6

Arrays in Java

• Arrays are objects — unlike in C/C++, where they’re basically pointers.

• Declaring (references to) arrays — denote by putting brackets after type.

• Creating arrays — use new, e.g.,

new int[10]

new String[n]

(Remember that the second one only creates references.)

• All arrays have length variable.

• Otherwise, syntax is same as C/C++; indices start at 0.

• Java runtime does automatic bounds-checking — unlike in C/C++, get

ArrayBoundsException rather than random problems.



CSCI 1321 September 22, 2005

Slide 7

Minute Essay

• None — quiz.


