
CSCI 1321 November 29, 2005

Slide 1

Administrivia

• (Review minute essay from last time.)

• Reminder: Homework 6 code due Thursday. Also Quiz 6 (topic — recursion).

• Original plan was to have eight homeworks, with Homework 7 asking you to

do an alternate implementation of the priority queue and Homework 8 asking

you to finish anything about your game that’s not already done. Probably not

enough to time to do both, so: I’ll require one, but not both; do both for extra

credit. Due date will be during finals period.

Slide 2

Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from

parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf

node).

• Another, recursive definition — tree is one node connected by edges to 0 or

more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.



CSCI 1321 November 29, 2005

Slide 3

Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data

and references to children (linked list or Vector or . . . ).

• Easier if number of children is limited to two, and this turns out to be

sufficiently useful in practice — “binary tree”. Then Node consists of pointers

to data and left and right subtrees.

Slide 4

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there

something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.

(Admittedly a little weird for non-binary trees.)

• Sketch some code for at least one of these.



CSCI 1321 November 29, 2005

Slide 5

Sorted Binary Trees (Binary Search Trees)

• Key property — everything in the left subtree is smaller than the root, and

everything in the right is bigger.

• Why is this useful? If you want a data structure to hold a collection that will be

searched frequently, what are the choices? and how fast is each to search?

to modify (insert/remove)? Compare approximate times for arrays (sorted and

unsorted), linked lists (sorted and unsorted), sorted binary tree.

• Sketch some code for add and find. (remove is trickier, so we’ll just talk

about general idea.)

Slide 6

Heaps

• Heap is another tree-based data structure, with two properties:

– A node is always “bigger than” both its children.

– Tree is “complete”.

• For a priority queue, we want to retrieve the “biggest” thing (for game

problem, smallest update time). Does this seem useful?

• Note also that we can store a complete binary tree in an array.

• How to insert and remove? Compare running times.



CSCI 1321 November 29, 2005

Slide 7

Minute Essay

• None — quiz.


