
CSCI 1321 August 29, 2006

Slide 1

Administrivia

• Linux accounts for new students should have been created, with passwords

mailed to Trinity e-mail addresses.

Problems? Talk to me. To change your password, yppasswd from the

command line.

• Link added to “Useful links” page to Linux command-line information.

Slide 2

More Administrivia

• Please do not reboot the machines in this room (HAS 340); people rely on

their being available for remote access.



CSCI 1321 August 29, 2006

Slide 3

About the Readings

• The textbook (Java Software Structures) is intended for a second-semester

programming course, for people who already know Java.

• Since we teach our first-semester course in C — Dr. Lewis has been writing a

“From C to Java” document.

• You should probably skim all assigned reading, but those with Java

background will find some parts review.

Slide 4

The Project

• Did you start reading the project description? Do you have (quick) questions?



CSCI 1321 August 29, 2006

Slide 5

“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,

functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems

consisting of many (real-world) objects.

Slide 6

What’s An Object?

• Object — set of data (attributes) and associated functions (methods,

behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other

messages.

• Often makes sense to have many similar objects — hence “classes”.



CSCI 1321 August 29, 2006

Slide 7

What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects

are “instances” of the class.

• Defines attributes and methods each object will have (instance

variables/methods), attributes and methods shared by all objects of a class

(class variables/methods).

• Public interface — attributes and methods visible from outside the class.

Slide 8

Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for

efficiency — but it’s much more strongly object-oriented than a hybrid

language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions

like the ones in C.)

• Java variables (except primitives) are references to objects, classes define

types.

• Classes, attributes, methods have varying “visibilities” (from public to private).



CSCI 1321 August 29, 2006

Slide 9

Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only

one class per source code file (exception is inner/nested classes — more

about them later).

• Any class can have a main method that can be launched by the runtime

system (more about that later).

Slide 10

Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by

all objects).

– Methods — similar to C functions, but can be static or non-static (“instance

methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public or private. Good practice to

define as private, except for constants that need to be used outside the class.



CSCI 1321 August 29, 2006

Slide 11

Naming Conventions

• Java library classes and methods follow these conventions:

– If it’s mixed-case and starts with uppercase, it’s a class.

– If it’s mixed-case and starts with lowercase, it’s a variable or method.

– If it’s all uppercase, it’s a constant.

• You should follow them too, so your code will be easier for experienced Java

programmers to read.

Slide 12

Tools

• Java programs are text, so you can write them with a text editor and compile

and run them from the command line. (In fact I usually do.)

• However, many professional programmers use an IDE (Integrated

Development Environment), so we will too. It’s Eclipse, and open-source, so

you should be able to install a copy on your home machine if you like.



CSCI 1321 August 29, 2006

Slide 13

Example(s)

• Let’s write a “hello world” program.

• We’ll use Eclipse to

– Define a project, a package, and a class with a main method.

– Compile and run.

– Generate HTML documentation.

• Other example(s) as time permits.

(All example code will be available linked from the “Sample programs” page.)

Slide 14

Minute Essay

• Was there anything today that was particularly unclear?

• If you have programmed in Java before, what tool(s) did you use?


