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Administrivia

• Linux accounts for new students should have been created, with passwords

mailed to Trinity e-mail addresses.

Problems? Talk to me. To change your password, yppasswd from the

command line.

• Link added to “Useful links” page to Linux command-line information.
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More Administrivia

• Please do not reboot the machines in this room (HAS 340); people rely on

their being available for remote access.
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About the Readings

• The textbook (Java Software Structures) is intended for a second-semester

programming course, for people who already know Java.

• Since we teach our first-semester course in C — Dr. Lewis has been writing a

“From C to Java” document.

• You should probably skim all assigned reading, but those with Java

background will find some parts review.
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The Project

• Did you start reading the project description? Do you have (quick) questions?
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“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,

functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems

consisting of many (real-world) objects.
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What’s An Object?

• Object — set of data (attributes) and associated functions (methods,

behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other

messages.

• Often makes sense to have many similar objects — hence “classes”.
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What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects

are “instances” of the class.

• Defines attributes and methods each object will have (instance

variables/methods), attributes and methods shared by all objects of a class

(class variables/methods).

• Public interface — attributes and methods visible from outside the class.
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Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for

efficiency — but it’s much more strongly object-oriented than a hybrid

language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions

like the ones in C.)

• Java variables (except primitives) are references to objects, classes define

types.

• Classes, attributes, methods have varying “visibilities” (from public to private).
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Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only

one class per source code file (exception is inner/nested classes — more

about them later).

• Any class can have a main method that can be launched by the runtime

system (more about that later).
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Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by

all objects).

– Methods — similar to C functions, but can be static or non-static (“instance

methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public or private. Good practice to

define as private, except for constants that need to be used outside the class.
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Naming Conventions

• Java library classes and methods follow these conventions:

– If it’s mixed-case and starts with uppercase, it’s a class.

– If it’s mixed-case and starts with lowercase, it’s a variable or method.

– If it’s all uppercase, it’s a constant.

• You should follow them too, so your code will be easier for experienced Java

programmers to read.
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Tools

• Java programs are text, so you can write them with a text editor and compile

and run them from the command line. (In fact I usually do.)

• However, many professional programmers use an IDE (Integrated

Development Environment), so we will too. It’s Eclipse, and open-source, so

you should be able to install a copy on your home machine if you like.
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Example(s)

• Let’s write a “hello world” program.

• We’ll use Eclipse to

– Define a project, a package, and a class with a main method.

– Compile and run.

– Generate HTML documentation.

• Other example(s) as time permits.

(All example code will be available linked from the “Sample programs” page.)
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Minute Essay

• Was there anything today that was particularly unclear?

• If you have programmed in Java before, what tool(s) did you use?


